
5. Mon, Jan. 27

(Proof continued from last time. . . )
Last time, we introduced functions

� : Z �! ⇡1(S
1), w : ⇡1(S

1) �! Z.

� was defined by �(n) = �n, where �n(s) = e2⇡ins. The function w was defined by w(↵) = ↵̃(1),
where ↵̃ : I �! R was a lift of ↵ starting at 0. We were left with showing that w is the inverse of
�.

First note that �(s) = ns is a path in R starting at 0, and p � �(s) = e2⇡i(ns) = �n(s), so � is a
lift of �n starting at 0. By uniqueness of lifts (Lemma 4.3 from last time), � must be �̃n. Therefore

w � �(n) = w(�n) = �̃n(1) = �(1) = n.

It remains to check that
h
�(w(�))

i
= [�] for any loop �. Consider lifts ^�(w(�)) and �̃. These are

both paths in R starting at 0 and ending at �̃(1) = w(�) (this uses that w � �(n) = n). But any
two such paths are homotopic (use a straight-line homotopy)! Composing that homotopy with the
exponential map p will produce a path-homotopy �(w(�)) 'p � as desired. ⌅

Using problem 2 from Homework II, we get the following result.

Corollary 5.1. Let Tn denote the n-torus Tn = S1⇥S1⇥ · · ·⇥S1 (n times). Then ⇡1(Tn) ⇠= Zn.

We can derive a number of very interesting consequences from our knowledge of the fundamental
group of S1.

Theorem 5.2. (Brouwer fixed point theorem) For any map f : D2 �! D2, there exists at least
one point x 2 D2 such that f(x) = x. Such an x is called a fixed point of the map f .

Proof. Assume for a contradiction that f has no fixed points. Then x� f(x) is not the origin, and
for each point x there is a unique tx � 1 such that f(x) + tx(x � f(x)) lies on S1. This is where
the ray starting at f(x) and passing through x meets the circle. Define g(x) : D2 �! S1 by the
formula

g(x) = f(x) + tx(x� f(x)).

You should convince yourself that tx, and therefore g(x), is a continuous function of x.
Now the key point is that if x starts in the boundary S1 of D2, then tx = 1 and g(x) = x. In

other words, the composition

S1 i�! D2 g�! S1

is the identity map of S1. Consider what happens on the fundamental group. The conclusion would
be that the composition

⇡1(S
1) = Z i⇤�! ⇡1(D

2) = 0
g⇤�! ⇡1(S

1) = Z

is the identity map of Z, which is impossible. ⌅

Application: Take a cup of co↵ee and move it around, so that the co↵ee gets mixed up. When it
comes to rest, there is some particle that ends up where it started. (Okay, this is sort of BS since it
assumes every particle stays on the surface, but it is a common description of Brouwer fixed point
theorem.)

Theorem 5.3. (Fundamental theorem of algebra) Every nonconstant polynomial with complex
coe�cients has a solution in C.
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Proof. Assume that p(z) 6= 0 for all z 2 C. We will show that p must be constant. Define a function
f : S1 �! S1 by f(z) = p(z)/kp(z)k. We can define a homotopy by

h(z, t) = p(zt)/kp(zt)k.
Thus f is homotopic to a constant map, which means that it has “degree” zero.

On the other hand, write ai for the coe�cients of the degree n polynomial p(z). For convenience,
we assume p(z) is monic. Let k(z, t) be the homotopy between zn and p(z) given by the formula

k(z, t) =
nX

i=0

aiz
itn�i = zn + an�1z

n�1t+ · · ·+ a0t
n.

Note that, for t 6= 0 this can be rewritten as k(z, t) = tnp(z/t). In particular, this is never 0 by
hypothesis. It follows that the map H : S1 ⇥ I �! S1 defined by the formula

H(z, t) =
k(z, t)

kk(z, t)k
defines a homotopy from zn to f . This shows that f has degree n.

Combining the two statements gives that n = 0, so that p is a constant polynomial. ⌅
Application: . . . everything?

6. Wed, Jan. 29

Theorem 6.1. (Borsuk-Ulam Theorem) For every continuous map f : S2 �! R2, there is an
antipodal pair of points {x,�x} ⇢ S2 such that the f(x) = f(�x).

Proof. Suppose not. Then we can define a map g : S2 �! S1 by g(x) = f(x)�f(�x)
kf(x)�f(�x)k . Let

� : S1 �! S1 be the restriction to the equator. Note that since � extends over the northern (or

southern) hemisphere, the loop � is null. We also write � for the composition I �! S1 ��! S1.
The equation g(�z) = �g(z) means that �(�z) = ��(z) or �(t+ 1

2) = ��(t). Denote by �̃ a lift

to a path in R. Then �̃ must satisfy the equation �̃(t + 1
2) = �̃(t) + 1

2 + k for some integer k. In
particular, we find that

�̃(1) = �̃

✓
1

2

◆
+

1

2
+ k = �̃(0) + 1 + 2k.

Thus the degree of � is the odd integer 1 + 2k. This contradicts that � is null. ⌅
Application: At any point in time, there are two polar opposite points on Earth having the same
temperature and same barometric pressure. (Or pick any two continuously varying parameters)

Corollary 6.2. The sphere S2 is not homeomorphic to any subspace of R2.

Proof. According to the theorem, there is no continuous injection S2 �! R2. ⌅
Dependence on the basepoint
Although we often talk about “the fundamental group” of a space X, this group depends on the

choice of basepoint for the loops. One thing at least should be clear: if we want to understand
⇡1(X,x0), only the path component of x0 in X is relevant. Any other path component can be
ignored. More precisely, if PCx denotes the path-component of a point x, then for any choice of
basepoint x0, we get an isomorphism of groups

⇡1(PCx0 , x0) ⇠= ⇡1(X,x0).

For this reason, we will often assume from now on that our spaces are path-connected.
Under this assumption that X is path-connected, how does the fundamental group depend on

the choice of base point? Suppose that x0 and x1 are points in X. How can we compare loops
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based at x0 to loops based at x1? Since X is path-connected, we may choose some path ↵ in X
from x0 to x1. Then, if � is a loop based at x0, we get a loop ↵ · � · ↵. Let us write �↵(�) for this
loop.

Proposition 6.3.

(1) The operation �↵ gives a well-defined operation on homotopy-classes of loops.
(2) The operation �↵ only depends on the homotopy-class of ↵.
(3) The operation �↵ induces an isomorphism of groups

⇡1(X,x0) ⇠= ⇡1(X,x1)

with inverse induced by �↵.

Proof. Both (1) and (2) follow immediately from Proposition 3.1. It is also clear that �↵ is inverse
to �↵, since

�↵(�↵(�)) = ↵ · ↵ · � · ↵ · ↵ 'p �.

Finally, we show �↵ is a homomorphism:

[�↵(� · �)] = [↵ · � · � · ↵] = [↵ · � · (↵ · ↵) · � · ↵] = [�↵(�)] · [�↵(�)].

⌅
So, as long as X is path-connected, the isomorphism-type of the fundamental group of X does

not depend on the basepoint. For example, once we know that ⇡1(R2,0) = hei, it follows that
the same would be true with any other choice of basepoint. A (path-connected) space with trivial
fundamental group is said to be simply connected. Again, we know that any convex subset of
Rn is simply connected.

We saw that S1 has a nontrivial fundamental group, but in contrast we will see that the higher
spheres are all simply connected.

Theorem 6.4. The n-sphere Sn is simply connected if n � 2.

This follows easily from the following theorem.

Theorem 6.5. Any continuous map S1 �! Sn is path-homotopic to one that is not surjective.

Let’s first use this to deduce the statement about n-spheres. Let � be a loop in Sn. We know
it is path-homotopic to a loop � that is not surjective. But recall that Sn � {P} ⇠= Rn. Thus we
can contract � using a straight-line homotopy in the complement of any missed point. It remains
to prove the latter theorem.

Proof. There are a number of ways to prove this result. For instance, it is an easy consequence of
“Sard’s Theorem” from di↵erential topology. Here is a proof using once again the Lebesgue number
lemma.

Let {U, V } be the covering of Sn, where U is the upper (open) hemisphere, and V is the comple-
ment of the North pole. Let � : S1 �! Sn be a loop. By Lebesgue, we can subdivide the interval
I into finitely many subintervals [si, si+1] such that on each subinterval, � stays within either U or
V . We will deform � so that it misses the North pole. On the subintervals that are mapped into
V , nothing needs to be done.

Suppose [si, si+1] is not mapped into V , so that � passes through the North pole on this segment.
Recall that the open hemisphere U is homeomorphic to Rn. The problem thus reduces to the
following: given a path in Rn, show it is path-homotopic to one not passing through the origin.
This is simple. First, any path is homotopic to the straight-line path. If that does not pass through
the origin, great. If it does, just wiggle it a little, and it won’t any more. ⌅
Corollary 6.6. The infinite sphere S1 is simply connected.
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Proof. Consider a loop ↵ in S1. The image of ↵ is then a compact subset of the CW complex
S1. It follows (see Hatcher, A.1) that the image of ↵ is contained in a finite union of cells. In
other words, the image of ↵ is contained in some Sn. By the above, ↵ is null-homotopic in Sn and
therefore in S1 as well. ⌅

You showed on your homework that S1 is contractible, and this in fact implies simply connected,
as the next result shows.

Theorem 6.7. Let f : X �! Y be a homotopy equivalence. Then, for any choice of basepoint
x 2 X, the induced map

f⇤ : ⇡1(X,x)
⇠=�! ⇡1(Y, f(x))

is an isomorphism.

At first glance, this might seem obvious, since we have a quasi-inverse g : Y �! X to f , and so
we would expect g⇤ to be the inverse of f⇤. But note that there is no reason that g(f(x)) would be
x again, so g⇤ does not even map to the correct group to be the inverse of f⇤. We need to employ
some sort of change-of-basepoint to deal with this.

Proposition 6.8. Let h be a homotopy between maps
f, g : X ◆ Y . For a chosen basepoint x0 2 X, define
a path ↵ in Y by ↵(s) = h(x0, s). Then the diagram
to the right commutes.

⇡1(X,x0)
f⇤ //

g⇤ ''

⇡1(Y, f(x0))

�↵⇠=
✏✏

⇡1(Y, g(x0))

Proof. For any loop � in X based at x0, we want a path-homotopy H : �↵(f � �) 'p g � �. For
each t, let ↵t denote the path ↵t(s) = ↵(1� (1� s)(1� t)). Note that ↵0 = ↵ and ↵1 is constant
at ↵(1) = g(x0).

Such a path-homotopy is given by

Ht = ↵t · (ht � �) · ↵t

⌅
Proof of Theorem 6.7. Let g : Y �! X be a quasi-inverse to f . Then g � f ' idX , so Prop 6.8
gives us a diagram

⇡1(X,x0)
id⇤
⇠=

//

(gf)⇤ ''

⇡1(X,x0)

�↵⇠=
✏✏

⇡1(X, gf(x0))

Now (gf)⇤ must be an isomorphism since the other two maps in the diagram are isomorphisms.
Since (gf)⇤ = g⇤ � f⇤, the map f⇤ must be injective and similarly g⇤ must be surjective.

But now we can swap the roles of f and g, getting a diagram

⇡1(Y, f(x0))
id⇤
⇠=
//

(fg)⇤ ((

⇡1(Y, f(x0))

 ↵⇠=
✏✏

⇡1(Y, fgf(x0))

It then follows that g⇤ : ⇡1(Y, f(x0)) �! ⇡1(X, gf(x0)) is injective. Since we already showed it is
surjective, we deduce that it is an isomorphism. Now going back to our first diagram, we get

g⇤ � f⇤ = �↵, or f⇤ = g�1
⇤ � �↵,

so that f⇤ : ⇡1(X,x0) �! ⇡1(Y, f(x0)) is an isomorphism. ⌅
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So far, we know a number of simply connected spaces (Rn, Sn for n � 2), and we know that
⇡1(Tn) ⇠= Zn for any n � 1. Can there be torsion in the fundamental group? For example, is it
possible that for some nontrivial loop � in X, winding around the loop twice gives a trivial loop?
The next example has this property.

Recall that the real projective plane RP2 is defined as the quotient of S2 by the equivalence
relation x ⇠ �x. The equivalence classes are precisely the sets of pairs of antipodal points. Another
way to think about this is that each pair of antipodal points corresponds to a straight line through
the origin. We will determine ⇡1(RP2).

12


