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The interesting, new result here concerns the existence of lifts.

Proposition 14.1. (Lifting Criterion) Let p: E — B be a covering and let f : Z — B, with Z

very connected. Given points zg € Z and ey € E with f(z9) = p(eo), there is a lift f with f(zg) =32
if and only if f«(m1(Z, 20)) C p«(m1(E, €0))-

Proof. (=) This is clear. Since f = po f, we have f, = p, o f,.

(<) Here is the more interesting direction. Suppose that fi(7m1(Z,20)) C p«(m(E,€p)). Let
z € Z. We wish to define f(z) Pick any path « in Z from 2y to z. Then f o« is a path in B,
which therefore lifts uniquely to a path & in E starting at, say eg. We define f (z) = a(1). It is
clear that f is a lift of f.

Why is the lift f well-defined? Suppose § is another path in Z from zy to z. Then f o (a-B)is
a loop in B at by = f(z0). By assumption, this means that for some loop ¢ in E, we have

pod =y fola-B)= f(a) f(B)
in B. Since path-composition behaves well with respect to path-homotopy, we have a path-
homotopy

h:(pod)- f(B)=p f(a)
of paths in B. Note that the path (pod) - f(8) lifts to the path 0 - . The homotopy h then lifts
(uniquely) to a path-homotopy in E
h:6-8 ~p Q.
In particular, these have the same endpoints. Of course, the endpoint of ¢ - B is simply the endpoint
of B. Tt follows that f is well-defined at z.

Just for emphasis, let’s go through the proof that f is continuous. Let z € Z and let U be
an evenly covered neighborhood U of f(z), and let V be the component of p~1(U) containing the
lift f(z). Let W C Z be the path-component of f~!(U) containing z. Since Z is locally path-
connected, W is open. Moreover, since W is path-connected and f (W)NV # 0, we must have
f (W) C V. Then on the neighborhood W of z, the lift f may be described as the composition

p|‘71 o f. It follows that f is continuous on the neighborhood W of z. Since z was arbitrary, f is
continuous. |

This implies what we already know: S' is not a retract of R. More generally, and less trivially,
we have that the identity map S' — S! does not lift against the n-fold cover p,, : S' — S'. Even
more generally, we might ask about lifting some pj, : S' — S! against the cover p, : S1 — S'.
By the result above, this happens if and only if kZ C nZ. In other words, this happens if and only
if n|k.

More interestingly, we have

Corollary 14.2. Suppose that the covering space E is simply-connected. Then a map f: Z — B
lifts to some f : Z — E if and only if f induces the trivial map on fundamental groups.

Corollary 14.3. Suppose that Z is simply-connected and p : E — B is a covering map. Then
any map [ : Z — B lifts against p.

Thus if X — B is a simply connected covering and £ — B is any covering, we automatically
get a map of covers X — F. For this reason, simply connected covers are referred to as universal
covers.

Proposition 14.4. Suppose that ¢ : E1 — FEo is a map of covers. Then ¢ is a covering map.
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Proof. Let e € E5. We need to find an evenly-covered neighborhood of e. We know that the point
p2(e) € B has an evenly covered neighborhood Us (with respect to p2). Let U; be an evenly covered
neighborhood, with respect to p1, of pa(e). Write U for the component of U; N U, containing po(e).
Then p2_1(U) = [1V;. Let Vp be the component containing e. Write pl_l(U) = [IW;. Then, since U
is connected, each V; and W; must be connected. It follows that

¢ takes each W; into a single V;, so that ¢~ (V) C p;'(U) is a [ E
disjoint union of some of the W;’s, and it follows that ¢ restricts to 3
a homeomorphism on each component because both p; and ps do so. — “%‘f fe

It only remains to show that ¢~ !(e) is nonempty. Let b = pa(e), ‘-e e
and pick any €’ € pl_l(b). Since E' is very connected, we can find a
path « : ¢(€/) ~ e in E. We can push this path o down to a loop P'\’ J Pz
pocr in B and then lift this uniquely to a path & in E; starting at ¢’. ®
Now (&) is a lift of peav in Fy starting at p(e’), so by uniqueness of g
lifts, we must have p(&) = . In particular, p(&(1)) = e.

|
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It follows that any universal cover X — B covers every other covering E — B.

Remark 15.1. Recall that in the proof of Theorem 11.4, we ended up building a map of covers
¢ : X — X corresponding to any point in the fiber F', but we wanted to know it was in fact
a homeomorphism. Prop 14.4 now gives us that it is a covering map, so that according to the
homework, it suffices to show that the ¢ we constructed was injective. This can be seen by verifying
that it is injective on each fiber.

Our next goal is to completely understand the possible covers of a given space B. There are
two avenues of approach. On the one hand, Prop. 13.2 tells us that covering spaces give rise to
subgroups of m1(B), so we can try to understand the collection of subgroups. Another approach,
which we will look at next, focuses on the fiber F' = p~1(bg).

It will be convenient in what follows to write G = 71 (B, bg) and F = p~1(by) C E. Given a loop
7 based at by and a point f € F', we will write y7 for the lift of 4 which starts at f.

Theorem 15.2. Let p: E — B be a covering and let F = p~'(b) be the fiber over the basepoint.
Then the function

a:Fxm(B)—F  (f,[y]) = 3(1)

specifies a transitive right action of w1 (B) on the fiber F'. This is called the monodromy action.
Proof. Recall that we have already showed this to be well-defined.

Let ¢y, be the constant loop at bg. Then the constant loop ¢ at f in E is a lift of ¢, starting
at f, so by uniqueness it must be the only lift. Thus f - [c5,] = f.

Now let a and 8 be loops at b. We wish to show that (f-«a)-8 = f-(a- ). Let fo = ar(1).
Then ay - By, is a (= the) lift of a - § starting at f, so

fo(a-pB)=as-Br1).
On the other hand, f-a = as(1) = fa, so
(f-@)-B=fr-B=Pp1)
Finally, to see that this action is transitive, let fi; and fo be points in the fiber F. Let v be a path

in E from f; to fa. Then a = po~is aloop at by. Furthermore &y, =v,s0 fi-a=~(1)=fo. B
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Note that if we instead wrote path-composition in the “correct” order (i.e. in the same order as
function composition), this would give a left action of 71(B) on F.

By the Orbit-Stabilizer theorem, since G acts transitively on F', there is an isomorphism of right
G-sets F' = G,,\G, where G¢, < G is the stabilizer of ey.

Proposition 15.3. The stabilizer of e € F wunder the monodromy action is the subgroup
p«(m(E, €)) < m1(B, bo).

Proof. Let [y] € m1(E,e). Then ~ is a lift of p o~y starting at e, so e p.(v) = (1) = e. Thus p.(7)
stabilizes e.

On the other hand, let [a] € m1 (B, by) and suppose that e - [o] = e. This means that « lifts to a
loop @ in E. Thus a = po & and [a] € p.«(m1(E,€)). [ ]

Corollary 15.4. Let p: E — B be a covering. Then there is an identification of right w1 (B)-sets
F = p(m(E,e))\mi(B,b).
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We have seen that any covering gives rise to a transitive G-set. We would also like to understand
maps of coverings.

Definition 16.1. Let X and Y be (right) G-sets. A function f : X — Y is said to be G-
equivariant (or a map of G-sets) if f(zg) = f(x) - g for all .

Proposition 16.2. Let ¢ : Fy — FEs be a map of covers of B. The induced map on fibers
Fy — Fy is w1 (B)-equivariant.

Proof. Let [y] € m(B) and f € Fi. We have f - [y] = 4¢(1), where ¥ is the lift of v starting at

f. Similarly, we have ¢(f) - [v] = F,()(1). But () is a lift of v starting at ¢ (v(0)) = ¢(f), so
Yo(f) = ©(7f). Thus

We showed last time that F; and F5 are G-orbits, so we pause to analyze maps between orbits
in general.

Proposition 16.3. Let H K < G. Then every G-equivariant map ¢ : H\G — K\G is of the
form Hgw— K~g for some v € G satisfying yHy ! < K.

Proof. Since H\G is a transitive G-set, an equivariant map out of it is determined by the value at
any point. Suppose we stipulate

He — K.
Then equivariance would force

Hg— Kng.
Is this well-defined? Since Hg = Hhg for any h € H, we would need Kvyg = K~hg. Multiplying
by ¢~ 'y~ gives K = Kyhy~!. Since h € H is arbitrary, this says that yH~~! < K. |

Corollary 16.4. A G-equivariant map ¢ : H\G — K\G exists if and only if H is conjugate in G
to a subgroup of K. The two orbits are isomorphic (as right G-sets) if and only if H is conjugate
to K.

Notation. Given covers (E1,p1) and (Ea,p2) of B, we denote by Mapg(E1, E2) the set of cov-
ering homomorphisms ¢ : By — Es. Given two right G-sets X and Y, we denote by Homg(X,Y')
the set of G-equivariant maps X — Y.

The following theorem classifies covering homomorphisms.
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Theorem 16.5. Let Ey and E5 be coverings of B. Then Proposition 16.2 induces a bijection
Mapg(E1, E2) = Homg(Fy, Fy).

Proof. The key is that a covering homomorphism is a lift in the diagram to
the right. Uniqueness of lifts gives injectivity in the theorem. For surjectiv-
ity, we use the lifting criterion Prop 14.1.Thus suppose given a G-equivariant
map A : F; — F» and fix a point e; € Fy. Let ea = A(e1) € Fy. The lifting
criterion will provide a lift if we can verify that

E,
(P1)«(m1(E1, e1)) < (p2)«(m1(Ea, e2)). o 7
But remember that according to Prop 15.3, these are precisely the stabilizers 7 ipz
of e; and eo, respectively. Writing H; and Hs for these groups, the map E —r B

A Fy — F5 corresponds to a map
/>\\ : Hl\G — HQ\

According to Prop 16.3, this means that yH;y~! < Hy, where I?l\e = Hyn.

The fact that A(e1) = ez means that v =e. So H; < Hy as desired. [ |
We have almost shown that working with covers of B is the same as working with transitive

right G-sets (technically, we are heading to an “equivalence of categories”). All that is left is to
show that for every G-orbit F', there is a cover p : E — B whose fiber is F' as a G-set.
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