
14. Mon, Feb. 17

The interesting, new result here concerns the existence of lifts.

Proposition 14.1. (Lifting Criterion) Let p : E �! B be a covering and let f : Z �! B, with Z

very connected. Given points z0 2 Z and e0 2 E with f(z0) = p(e0), there is a lift f̃ with f̃(z0) = e0
if and only if f⇤(⇡1(Z, z0)) ✓ p⇤(⇡1(E, e0)).

Proof. ()) This is clear. Since f = p � f̃ , we have f⇤ = p⇤ � f̃⇤.
(() Here is the more interesting direction. Suppose that f⇤(⇡1(Z, z0)) ✓ p⇤(⇡1(E, e0)). Let

z 2 Z. We wish to define f̃(z). Pick any path ↵ in Z from z0 to z. Then f � ↵ is a path in B,
which therefore lifts uniquely to a path ↵̃ in E starting at, say e0. We define f̃(z) = ↵̃(1). It is
clear that f̃ is a lift of f .

Why is the lift f̃ well-defined? Suppose � is another path in Z from z0 to z. Then f � (↵ · �) is
a loop in B at b0 = f(z0). By assumption, this means that for some loop � in E, we have

p � � 'p f � (↵ · �) = f(↵) · f(�)
in B. Since path-composition behaves well with respect to path-homotopy, we have a path-
homotopy

h : (p � �) · f(�) 'p f(↵)

of paths in B. Note that the path (p � �) · f(�) lifts to the path � · �̃. The homotopy h then lifts
(uniquely) to a path-homotopy in E

h̃ : � · �̃ 'p ↵̃.

In particular, these have the same endpoints. Of course, the endpoint of � · �̃ is simply the endpoint
of �̃. It follows that f̃ is well-defined at z.

Just for emphasis, let’s go through the proof that f̃ is continuous. Let z 2 Z and let U be
an evenly covered neighborhood U of f(z), and let V be the component of p�1(U) containing the
lift f̃(z). Let W ✓ Z be the path-component of f�1(U) containing z. Since Z is locally path-
connected, W is open. Moreover, since W is path-connected and f̃(W ) \ V 6= ;, we must have
f̃(W ) ✓ V . Then on the neighborhood W of z, the lift f̃ may be described as the composition
p|�1

V � f . It follows that f̃ is continuous on the neighborhood W of z. Since z was arbitrary, f̃ is
continuous. ⌅

This implies what we already know: S1 is not a retract of R. More generally, and less trivially,
we have that the identity map S1 �! S1 does not lift against the n-fold cover pn : S1 �! S1. Even
more generally, we might ask about lifting some pk : S1 �! S1 against the cover pn : S1 �! S1.
By the result above, this happens if and only if kZ ✓ nZ. In other words, this happens if and only
if n | k.

More interestingly, we have

Corollary 14.2. Suppose that the covering space E is simply-connected. Then a map f : Z �! B
lifts to some f̃ : Z �! E if and only if f induces the trivial map on fundamental groups.

Corollary 14.3. Suppose that Z is simply-connected and p : E �! B is a covering map. Then
any map f : Z �! B lifts against p.

Thus if X �! B is a simply connected covering and E �! B is any covering, we automatically
get a map of covers X �! E. For this reason, simply connected covers are referred to as universal
covers.

Proposition 14.4. Suppose that ' : E1 �! E2 is a map of covers. Then ' is a covering map.
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Proof. Let e 2 E2. We need to find an evenly-covered neighborhood of e. We know that the point
p2(e) 2 B has an evenly covered neighborhood U2 (with respect to p2). Let U1 be an evenly covered
neighborhood, with respect to p1, of p2(e). Write U for the component of U1 \U2 containing p2(e).
Then p�1

2 (U) ⇠= qVi. Let V0 be the component containing e. Write p�1
1 (U) ⇠= qWj . Then, since U

is connected, each Vi and Wj must be connected. It follows that
' takes each Wj into a single Vi, so that '�1(V0) ✓ p�1

1 (U) is a
disjoint union of some of the Wj ’s, and it follows that ' restricts to
a homeomorphism on each component because both p1 and p2 do so.
It only remains to show that '�1(e) is nonempty. Let b = p2(e),

and pick any e0 2 p�1
1 (b). Since E is very connected, we can find a

path ↵ : '(e0)  e in E. We can push this path ↵ down to a loop
p2↵ in B and then lift this uniquely to a path ↵̃ in E1 starting at e0.
Now '(↵̃) is a lift of p2↵ in E1 starting at '(e0), so by uniqueness of
lifts, we must have '(↵̃) = ↵. In particular, '(↵̃(1)) = e.

⌅

15. Wed, Feb. 19

It follows that any universal cover X �! B covers every other covering E �! B.

Remark 15.1. Recall that in the proof of Theorem 11.4, we ended up building a map of covers
' : X �! X corresponding to any point in the fiber F , but we wanted to know it was in fact
a homeomorphism. Prop 14.4 now gives us that it is a covering map, so that according to the
homework, it su�ces to show that the ' we constructed was injective. This can be seen by verifying
that it is injective on each fiber.

Our next goal is to completely understand the possible covers of a given space B. There are
two avenues of approach. On the one hand, Prop. 13.2 tells us that covering spaces give rise to
subgroups of ⇡1(B), so we can try to understand the collection of subgroups. Another approach,
which we will look at next, focuses on the fiber F = p�1(b0).

It will be convenient in what follows to write G = ⇡1(B, b0) and F = p�1(b0) ⇢ E. Given a loop
� based at b0 and a point f 2 F , we will write �̃f for the lift of � which starts at f .

Theorem 15.2. Let p : E �! B be a covering and let F = p�1(b) be the fiber over the basepoint.
Then the function

a : F ⇥ ⇡1(B) �! F, (f, [�]) 7! �̃f (1)

specifies a transitive right action of ⇡1(B) on the fiber F . This is called the monodromy action.

Proof. Recall that we have already showed this to be well-defined.
Let cb0 be the constant loop at b0. Then the constant loop cf at f in E is a lift of cb0 starting

at f , so by uniqueness it must be the only lift. Thus f · [cb0 ] = f .
Now let ↵ and � be loops at b. We wish to show that (f · ↵) · � = f · (↵ · �). Let f2 = ↵̃f (1).

Then ↵̃f · �̃f2 is a (= the) lift of ↵ · � starting at f , so

f · (↵ · �) = ↵̃f · �̃f2(1).

On the other hand, f · ↵ = ↵̃f (1) = f2, so

(f · ↵) · � = f2 · � = �̃f2(1)

Finally, to see that this action is transitive, let f1 and f2 be points in the fiber F . Let � be a path
in E from f1 to f2. Then ↵ = p � � is a loop at b0. Furthermore ↵̃f1 = �, so f1 ·↵ = �(1) = f2. ⌅
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Note that if we instead wrote path-composition in the “correct” order (i.e. in the same order as
function composition), this would give a left action of ⇡1(B) on F .

By the Orbit-Stabilizer theorem, since G acts transitively on F , there is an isomorphism of right
G-sets F ⇠= Ge0\G, where Ge0  G is the stabilizer of e0.

Proposition 15.3. The stabilizer of e 2 F under the monodromy action is the subgroup
p⇤(⇡1(E, e))  ⇡1(B, b0).

Proof. Let [�] 2 ⇡1(E, e). Then � is a lift of p � � starting at e, so e · p⇤(�) = �(1) = e. Thus p⇤(�)
stabilizes e.

On the other hand, let [↵] 2 ⇡1(B, b0) and suppose that e · [↵] = e. This means that ↵ lifts to a
loop ↵̃ in E. Thus ↵ = p � ↵̃ and [↵] 2 p⇤(⇡1(E, e)). ⌅
Corollary 15.4. Let p : E �! B be a covering. Then there is an identification of right ⇡1(B)-sets

F ⇠= p⇤(⇡1(E, e))\⇡1(B, b).

16. Fri, Feb. 21

We have seen that any covering gives rise to a transitive G-set. We would also like to understand
maps of coverings.

Definition 16.1. Let X and Y be (right) G-sets. A function f : X �! Y is said to be G-
equivariant (or a map of G-sets) if f(xg) = f(x) · g for all x.

Proposition 16.2. Let ' : E1 �! E2 be a map of covers of B. The induced map on fibers
F1 �! F2 is ⇡1(B)-equivariant.

Proof. Let [�] 2 ⇡1(B) and f 2 F1. We have f · [�] = �̃f (1), where �̃f is the lift of � starting at
f . Similarly, we have '(f) · [�] = �̃'(f)(1). But '(�̃) is a lift of � starting at '(�(0)) = '(f), so
�̃'(f) = '(�̃f ). Thus

'(f) · [�] = �̃'(f)(1) = '(�̃f )(1) = '(�̃f (1)) = '(f · [�]).
⌅

We showed last time that F1 and F2 are G-orbits, so we pause to analyze maps between orbits
in general.

Proposition 16.3. Let H,K  G. Then every G-equivariant map ' : H\G �! K\G is of the
form Hg 7! K�g for some � 2 G satisfying �H��1  K.

Proof. Since H\G is a transitive G-set, an equivariant map out of it is determined by the value at
any point. Suppose we stipulate

He 7! K�.

Then equivariance would force
Hg 7! K�g.

Is this well-defined? Since Hg = Hhg for any h 2 H, we would need K�g = K�hg. Multiplying
by g�1��1 gives K = K�h��1. Since h 2 H is arbitrary, this says that �H��1  K. ⌅
Corollary 16.4. A G-equivariant map ' : H\G �! K\G exists if and only if H is conjugate in G
to a subgroup of K. The two orbits are isomorphic (as right G-sets) if and only if H is conjugate
to K.

Notation. Given covers (E1, p1) and (E2, p2) of B, we denote by MapB(E1, E2) the set of cov-
ering homomorphisms ' : E1 �! E2. Given two right G-sets X and Y , we denote by HomG(X,Y )
the set of G-equivariant maps X �! Y .

The following theorem classifies covering homomorphisms.
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Theorem 16.5. Let E1 and E2 be coverings of B. Then Proposition 16.2 induces a bijection

MapB(E1, E2)
⇠=�! HomG(F1, F2).

Proof. The key is that a covering homomorphism is a lift in the diagram to
the right. Uniqueness of lifts gives injectivity in the theorem. For surjectiv-
ity, we use the lifting criterion Prop 14.1.Thus suppose given a G-equivariant
map � : F1 �! F2 and fix a point e1 2 F1. Let e2 = �(e1) 2 F2. The lifting
criterion will provide a lift if we can verify that

(p1)⇤(⇡1(E1, e1))  (p2)⇤(⇡1(E2, e2)).

But remember that according to Prop 15.3, these are precisely the stabilizers
of e1 and e2, respectively. Writing H1 and H2 for these groups, the map
� : F1 �! F2 corresponds to a map

b� : H1\G �! H2\.

According to Prop 16.3, this means that �H1�
�1  H2, where dH1e = H2�.

The fact that �(e1) = e2 means that � = e. So H1  H2 as desired. ⌅

E2

p2
✏✏

E1 p1
//

'
>>

B

We have almost shown that working with covers of B is the same as working with transitive
right G-sets (technically, we are heading to an “equivalence of categories”). All that is left is to
show that for every G-orbit F , there is a cover p : E �! B whose fiber is F as a G-set.
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