Math 751 - Topics in Topology Homework 4 Spring 2015

1. (a) (Replacing a map by a fibration) Let $f : X \longrightarrow Y$ be a map. Let P(Y) be the path space on Y. This is the space of paths in Y, topologized as P(Y) = Map(I, Y). Now define the mapping path space P(f) by the pullback

Show that we have a commutative triangle

in which α is a homotopy equivalence and β_f is a fibration.

- (b) What do you get if you replace $* \longrightarrow Y$ by a fibration?
- 2. Suppose that $f : X \longrightarrow Y$ is a fibration and Y is path-connected. Show that if y and y' are points of Y, then $f^{-1}(y) \simeq f^{-1}(y')$. This means that it still makes sense to talk about "the" fiber of a fibration that is not necessarily a bundle.
- 3. Let $p : E \longrightarrow B$ be a fibration and let $\iota : A \longrightarrow B$ be the inclusion of a subspace.
 - (a) Show that the restriction $p: p^{-1}(A) \longrightarrow A$ is also a fibration.
 - (b) Show that if $\iota : A \longrightarrow B$ induces an isomorphism in homotopy groups π_n for n < k and a surjection on π_k , then the same is true of the inclusion $j : p^{-1}(A) \longrightarrow E$. (Such a map is called an *n*-equivalence.)