Math 752 - Hopf algebras Worksheet 5 Spring 2017

1. Build the first 4 stages (i.e., up to P_3) of a minimal resolution of k over $E(x_1, x_3)$. Verify that the resulting vector space dimensions of $\operatorname{Ext}_{E(x_1, x_3)}^n(k, k)$ agree with $k[v_0, v_1]$ for $n \leq 3$.

2. Recall that $\mathcal{A}(1) \subseteq \mathcal{A}$ is the subalgebra generated by $\boxed{1}$ and $\boxed{2}$. The algebra generators $\boxed{1}$ and $\boxed{2}$ give rise to elements $h_0 \in \operatorname{Ext}_{\mathcal{A}(1)}^{1,1}$ and $h_1 \in \operatorname{Ext}_{\mathcal{A}(1)}^{1,2}$ which can be thought of as the extensions.

- (a) Show that $h_0h_1 = 0$ in $\operatorname{Ext}_{\mathcal{A}(1)}^{2,3}$ using the extension approach.
- (b) Show that $h_0h_1=0$ in $\operatorname{Ext}_{\mathcal{A}(1)}^{2,3}$ from the cobar complex. Recall that $\mathcal{A}(1)^\vee\cong \mathbf{F}_2[z_1,z_2]/(z_1^4,z_2^2)$, with z_1 primitive and $\Delta(z_2)=z_1^2\otimes z_1$.