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Mon, Jan. 8

Last summer, the team of Robert Burklund, Jeremy Hahn, Ishan Levy, and Tomer Schlank an-
nounced [BHLS] a disproof of Ravenel’s Telescope conjecture. This course will not cover their
work. Rather, this will be an introduction to the area, discussing the Telescope conjecture and its
ingredients and motivation.

The subject of chromatic homotopy theory crystallized in a series of conjectures [Ra] by Doug
Ravenel which appeared in print in the 1980’s. Amazingly, most of Ravenel’s conjectures were
proved shortly thereafter by Ethan Devinatz, Mike Hopkins, and Jeff Smith [DHS, HS]. The one
conjecture that resisted all attempts until this time is the Telescope conjecture. We will give precise
forms of the statement later, but here is a very rough idea:

In algebra, given a commutative ring R and an element f ∈ R, we can consider the “localization
of R away from f ”, which is

R f = R[1/ f ] = colim
(

R
f−→ R

f−→ R
f−→ . . .

)
.

If M is an R-module, we can equally well consider the localization

M f = RF ⊗R M = colim
(

M
f−→ M

f−→ M
f−→ . . .

)
.

This construction plays a prominent role in algebraic geometry.
In homotopy theory, given a self-map f : ΣnX −→ X from (some suspension of) a finite complex

X to itself, one can similarly consider the “telescope”

X[1/ f ] = hocolim
(

X
f−→ Σ−nX

f−→ Σ−2nX . . .
)

.

The negative suspensions only make sense in a “stable” world where suspension is invertible. The
homotopy colimit can be built as a kind of infinite mapping cylinder, which resembles a telescope.
The homotopy of the localization X[1/ f ] tells us about “ f -periodic” elements in the homotopy of
X.

The trouble is that the homotopy of X[1/ f ] is difficult to compute directly. The Telescope con-
jecture asserts that the localization X[1/ f ] is equivalent to another, more computable, localization
of X.

Wed, Jan. 10

The main application of these ideas is to the (stable) homotopy groups of spheres. Write S/2 for
the cofiber of the degree 2 map S −→ S, where S is the “sphere spectrum” (a stable analogue of S0).
Then Adams showed [A2] that there is a non-nilpotent self-map v4

1 : Σ8S/2 −→ S/2, meaning that
none of the iterates of this map are null-homotopic. Even better, for each k > 0, the composition

S8k ↪→ Σ8kS/2
v4

1−→ Σ8(k−1)S/2
v4

1−→ . . .
v4

1−→ S/2
j−→ S1

is not null-homotopic, where j : S/2 −→ S1 is the “projection onto the top cell” of the complex
S/2. Thus this construction gives an infinite family of nontrivial elements in the stable homotopy
groups of spheres! And this motivates the search for other such non-nilpotent self-maps of finite
complexes.

Remark 0.1. This course may be viewed as a much abbreviated version of the course [Ro] of John
Rognes given in Spring 2023. We have certainly relied on those notes, along with other resources
such as [Ra, Ra2], in preparing these notes.
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1. A REVIEW OF SPECTRA AND COHOMOLOGY THEORIES

We will be working in the stable homotopy category of spectra, and so we start with a quick
survey of same basic properties that we will need.

1.1. Spectra. Spectra can be thought of as the “stabilization” of based spaces with respect to the
suspension functor Σ : Top∗ −→ Top∗ given by ΣX = S1 ∧ X.

Definition 1.1. A spectrum E is a collection {En}n∈Z≥0 of based spaces together with structure
maps σn : ΣEn −→ En+1 for each n ≥ 0. A map of spectra φ : E −→ F is simply a collection
of based maps φn : En −→ Fn which are compatible with the structure maps, meaning that each
diagram of the form

ΣEn ΣFn

En+1 Fn+1

Σφn

σE
n σF

n

φn+1

commutes. We write Sp for the category of spectra.

The simplest kind of example to write down is a “suspension spectrum”,

Definition 1.2. Let X be a based space. The suspension spectrum of X is the spectrum Σ∞X
defined as the collection {ΣnX} and all of whose structure maps are identity maps.

Definition 1.3. The sphere spectrum is the suspension spectrum S = Σ∞S0.
We similarly write Sn = Σ∞Sn for n ≥ 0. It turns out that we can also make sense of Sn when n is

negative. For example, S−1 is the sequence of based spaces {∗, S0, S1, . . . }, where the first structure
map is (necessarily) constant. Similarly, S−n will have the first n spaces being ∗ (for n > 0).

Example 1.4. (Eilenberg-Mac Lane spectra) Let A be an abelian group. Recall that an Eilenberg-
Mac Lane space of type K(A, n) is a CW complex whose only nontrivial homotopy group is
πnK(A, n) ∼= A. One of the amazing facts about Eilenberg-Mac Lane spaces is that there is a
natural isomorphism

(1.1) H̃n(X; A) ∼= [X, K(A, n)]∗,

natural in based spaces X, between reduced cohomology and based homotopy classes of maps.
For any abelian group A, the Eilenberg-Mac Lane spectrum HA has HAn = K(A, n). The struc-

ture map ΣK(A, n) −→ K(A, n + 1) corresponds under (1.1) to an element of H̃n+1(ΣK(A, n); A).
The suspension isomorphism identifies this with H̃n(K(A, n); A), and there is a canonical element
corresponding under (1.1) to the identity map of the based space K(A, n).

For the next example, recalled the based loop space functor Ω : Top∗ → Top∗ defined by
ΩX = Map∗(S

1, X). This functor is right adjoint to Σ. This functor is also related to the previ-
ous example, in that the adjunction allows one to see that ΩK(A, n + 1) is a model for K(A, n). So
then the adjoint of a choice of homotopy equivalence K(A, n) ∼−→ ΩK(A, n + 1) can be taken for
the structure map of HA.
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Example 1.5. (Complex K-theory) Let U =
⋃

n U(n) be the infinite unitary group, where the in-
clusion U(n) ↪→ U(n + 1) includes U(n) as the (n + 1)× (n + 1)-unitary matrices with a 1 in the
top left corner.

Write BU(n) for the Grassmannian BU(n) = Grn(C∞) of n-dimensional complex subspaces of
C∞. There is an inclusion BU(n) → BU(n + 1) which takes the subspace V ⊂ C∞ to the subspace
C ⊕ V ⊂ C ⊕ C∞ ∼= C∞. Now define BU =

⋃
BU(n).

Then define the (periodic) complex K-theory spectrum KU by

KUn =

{
BU × Z n even
U n odd.

To define the structure maps we use that we have homotopy equivalences Ω(BU × Z) ≃ U (this
is not difficult) and ΩU ≃ BU × Z (this is a major theorem, the Bott Periodicity theorem). The
adjoints to these equivalences give maps

σodd : ΣU −→ BU × Z, σeven : Σ(BU × Z) −→ U,

which give the structure maps for KU.

Fri, Jan. 12

Definition 1.6. Let E ∈ Sp and X ∈ Top∗. We then define a spectrum E ∧ X by setting (E ∧ X)n =
En ∧ X and with structure map

Σ(E ∧ X)n = S1 ∧ En ∧ X σn∧id−−−→ En+1 ∧ X = (E ∧ X)n+1.

Note that if X and Y are based spaces, then we have an isomorphism

(Σ∞X) ∧ Y ∼= Σ∞(X ∧ Y).

Definition 1.7. Given a spectrum E, we define the homotopy groups of E as

πn(E) = colim
k

πn+k(Ek) for n ∈ Z,

where the colimit is along the maps πn+k(Ek)
Σ−→ πn+k+1(ΣEk)

σ∗−→ πn+k+1(Ek+1).

Note, in particular, that we now have homotopy groups in negative dimensions. Furthermore,
in contrast to homotopy groups of spaces, these are abelian groups in all dimensions.

Example 1.8. Let X be a based space. Then the homotopy groups π∗(Σ∞X) are the stable homo-
topy groups of X, which vanish for n negative.

In particular, for X = S0, these are the stable homotopy groups of spheres, the computation of
which is one of the main driving problems in homotopy theory!

Example 1.9. In contrast, an Eilenberg-Mac Lane spectrum has easy homotopy groups. We have

πn(HA) =

{
A n = 0
0 else.

Example 1.10. By Worksheet 1, the homotopy groups of KU are the homotopy groups of BU ×
Z (suitably reindexed for negative homotopy groups). The Bott periodicity theorem states that
BU × Z is homotopy equivalent to Ω2(BU × Z), so that the homotopy groups are 2-periodic.
Now BU is path-connected, so we have that the even homotopy groups of BU × Z, which agree
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with π0(BU ×Z), are Z. The odd homotopy groups of BU ×Z are the same as the even homotopy
groups of U. Since U is path-connected, these groups vanish. In other words,

πnKU =

{
Z n even
0 n odd.
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Wed, Jan. 17

1.2. The stable homotopy category and homology/cohomology theories. We do not typically
work with the category of spectra. Rather, we usually work with spectra only up to homotopy.
We need one definition before we state our main theorem about the stable homotopy category.

Definition 1.11. A map φ : E −→ F of spectra is called a stable equivalence if it induces an
isomorphism on homotopy groups πn for all n ∈ Z.

We then define the stable homotopy category by formally inverting the stable equivalences.

Theorem 1.12. There is a stable homotopy category of spectra, denoted HoSp, together with a functor
Sp −→ HoSp, such that

(1) The functor Sp −→ HoSp is the universal example of a functor with source Sp and which takes the
stable equivalences to isomorphisms, meaning that any other such functor factors through HoSp
up to isomorphism

(2) The functor (−) ∧ S1 : Sp → Sp becomes an equivalence on HoSp.
(3) The stable homotopy category HoSp has a closed symmetric monoidal structure, where the

monoidal product is a smash product, and the closed structure is a function spectrum construc-
tion. The unit object is S. The function spectrum is written F(−,−). In particular, the dual
DE = F(E, S) is known as the Spanier-Whitehead dual of E.

(4) The dualizable objects in HoSp are the retracts of finite cell complexes.
(5) HoSp is an additive category.
(6) The suspension spectrum functor induces a strong symmetric monoidal functor

Σ∞ : HoTop∗ −→ HoSp

with right adjoint Ω∞ : HoSp −→ HoTop∗ given by the telescope Ω∞E = hocolimn ΩnEn.

Notation 1.13. Given spectra E and F, we write [E, F] for the set of maps E −→ F in HoSp. By the
above, this is an abelian group.

There are many more important properties, some of which will arise later in the course. A
proof of the above theorem goes by building a “model” for the stable homotopy category. There
are many models of the stable homotopy category, though for many purposes, the choice of model
does not have significant impact.

One of the reasons to study spectra is that they give rise to, and in fact correspond to, general-
ized homology and cohomology theories on spaces.

Definition 1.14. Let X be a based CW complex and let E be a spectrum. We then define the
(reduced) E-homology and E-cohomology of X by

En(X) = πn(E ∧ X), En(X) = π−nF(Σ∞X, E) = [Σ−nΣ∞X, E].

We similarly talk of the E-homology or cohomology of X when X is a spectrum.

The E-homology of S is the same as the homotopy of E. This is typically abbreviated to E∗, and
is called the coefficients of the theory E.

Example 1.15. For A an abelian group, the above says that the ordinary reduced homology group
H̃n(X; A) is isomorphic to πn(HA ∧ X).
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1.3. Cofiber and fiber sequences, connective covers. Many constructions for spectra happen
“levelwise”.

Definition 1.16. (Wedge sums) Given E and F in Sp, their wedge sum is (E ∨ F)n = En ∨ Fn, with
structure map

S1 ∧ (En ∨ Fn) ∼= (S1 ∧ En) ∨ (S1 ∧ Fn)
σn∨σn−−−→ En+1 ∨ Fn+1.

One of the most useful tools in the stable homotopy category is a cofiber sequence.

Definition 1.17. Given a map φ : E −→ F of spectra, the cofiber of φ, written Cφ, is defined to be
levelwise the cofiber of φn. This can be extended to a spectrum, using that ΣC(φn) ∼= C(Σφn).

A cofiber sequence is a sequence X → Y → Z that is stably equivalent to one of the form
E

φ−→ F → Cφ.

Proposition 1.18. Let A
f−→ B

g−→ C be a cofiber sequence of spectra, and let D ∈ HoSp.
(1) D ∧ A −→ D ∧ B −→ D ∧ C is again a cofiber sequence in HoSp.
(2) [C, D] → [B, D] → [A, D] is exact.

Moreover, the cofiber of B
g−→ C( f ) is ΣA, and the cofiber sequence A

f−→ B
g−→ C can be extended

to the Puppe sequence

A
f−→ B

g−→ C h−→ ΣA
−Σ f−−→ ΣB

−Σg−−→ ΣC −Σh−−→ Σ2A . . .

This yields the following.

Corollary 1.19. Let A
f−→ B

g−→ C be a cofiber sequence of spectra, and let D ∈ HoSp. Then the Puppe
sequence induces a long exact sequence

· · · → [Σ2A, D] → [ΣC, D] → [ΣB, D] → [ΣA, D] → [C, D] → [B, D] → [A, D] → · · ·
Example 1.20. Let us write S/2 for the cofiber of the degree 2 map on S. Then we get a long exact
sequence

· · · → πnD 2−→ πnD → [Sn/2, D] → πn−1D 2−→ πn−1D → . . .

The previous few results also hold unstably. However, the next result, which can be summa-
rized as ”fiber sequences and cofiber sequences agree stably”, is a purely stable result.

Proposition 1.21. Let A
f−→ B

g−→ C be a cofiber sequence of spectra, and let D ∈ HoSp. Then the Puppe
sequence induces a long exact sequence

· · · → [D, A] → [D, B] → [D, C] → [D, ΣA] → [D, ΣB] → [D, ΣC] → [D, Σ2A] → · · ·

Fri, Jan. 18

We can use these ideas to build “connective covers”. Let X be a spectrum, and let G0 denote a
set of generators for π0(X). Then define W1 to be the cofiber of

∨
G0

S → X. Since S has no negative
homotopy groups, it follows that π0(W1) vanishes and that the negative homotopy groups of W1
are those of X. Next, write G1 for a set of generators of W1 and define W2 to be the cofiber of∨

G1
S1 → W1. Then both π0 and π1 of W2 vanish, while the negative homotopy groups still agree

with those of X. Now set P−1X = hocolimn Wn. This is a spectrum whose negative homotopy
groups agree with those of X, and whose homotopy groups in non-negative degrees all vanish. It
is called the (−1)-Postnikov approximation.
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On the other hand, define a spectrum P0X to be the (homotopy) fiber of X −→ P−1X. Then the
long exact sequence shows that the negative homotopy groups of P0X vanish, while the rest agree
with those of X. The spectrum P0X is called the connective cover of X. Notation for this in the
literature is very inconsistent. It is also written P∞

0 X, or τ≥0X, or X⟨−1⟩, among many others.

Definition 1.22. A spectrum X is said to be connective, or 0-connective, if all of its negative homo-
topy vanishes. More generally, X is n-connective if all of its homotopy vanishes in degree below
n.

Example 1.23. Both S and any Eilenberg-Mac Lane spectrum HA are connective.

Example 1.24. The connective cover of KU is denoted ku.
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Mon, Jan. 22

2. v0-PERIODICITY AND RATIONALIZATION

We are interested in computing stable homotopy groups, in particular the stable homotopy
groups of spheres. We first note that these (abelian) groups are not so bad.

Theorem 2.1 ([Ser]). Let X be simply connected. Then all of the homotopy groups of X are finitely gener-
ated if and only if all of the homology groups of X are finitely generated.

In particular, this implies that all of the stable homotopy groups of spheres are finitely generated
abelian groups. By the Structure Theorem for finitely generated abelian groups, such a group is of
the form

Zr0 ⊕ Z/pr1
1 ⊕ · · · ⊕ Z/prk

k

for primes pi and nonnegative integers ri. In practice, it is convenient to focus on one prime at a
time. This is accomplished through localization (we will return to this later).

Theorem 2.2. [Ser] The stable homotopy groups of spheres are finite in positive degrees.

This follows from

Theorem 2.3. [Ser] The homotopy group πk(Sn) is finite unless either k = n or if n is even and k =
2n − 1.

The proof of Theorem 2.3 uses the Serre spectral sequence.
Here is a quick intro to the Serre spectral sequence. The context
is a fibration F → E → B, and for simplicity assume that B
is simply connected. A (cohomological) spectral sequence is a
sequence E∗,∗

r of bigraded dga’s, where E∗,∗
r+1 is the cohomology

of E∗,∗
r for each r ≥ 1. In the case of the Serre spectral sequence

and working with coefficients in a field k, the E2 page of the
spectral sequence is H∗(B; k) ⊗k H∗(F; k). The differential dr
on Er goes right r and down r − 1. In the end, the vector space
Hn(E; k) is the direct sum of the vector spaces on the diagonal
x + y = n of the E∞ page.

Serre spectral sequence

H∗(B;k)

H
∗ (
F
;k

)

0 1 2 3 4

0

1

2

3

d2d2

d3d3

H4(E;k)

We will also rely on the following lemma, which can be proved by induction using the Serre
spectral sequence.

Lemma 2.4. The rational cohomology of K(Z, n) is Q[xn] if n is even and E(xn) (an exterior algebra) if n
is odd.

Wed, Jan. 24

Proof of Theorem 2.3. By the Hurewicz theorem, we know that πn(Sn) ∼= Z. We can then equiv-
alently describe the rational homotopy πk(P≥n+1Sn) ⊗ Q of the (n + 1)-connective cover. Since
this cover is defined as the fiber of Sn −→ K(Z, n), it follows that the fiber of P≥n+1Sn → Sn is
ΩK(Z, n) ≃ K(Z, n − 1).

9



Case 1: n odd. Here we want to show that P≥n+1Sn has no ratio-
nal homotopy. By the rational Hurewicz theorem, it remains to
show that P≥n+1Sn has no (reduced) rational homology, or equiv-
alently no (reduced) rational cohomology.

This is an easy exercise with the Serre spectral sequence, for
the fiber sequence K(Z, n − 1) → P≥n+1Sn → Sn. The spectral
sequence is displayed to the right in the case n = 3. It converges
to H∗(P≥4S3; Q). Since P≥4S3 is 3-connected, we know that the
rational homology and cohomology must vanish in degrees 1,
2, and 3. Thus the classes x2 and z3 cannot survive to the E∞
page of the spectral sequence. This implies that there must be a
differential from x2 to z3 and therefore also on powers of x2 by
the Leibniz (product) rule.

E3 page

H∗(S3;Q)

H
∗ (
K
(Z

,2
);
Q
)

0 1 2 3

0

1

2

3

4

5

6

1

x2

x2
2

x3
2

z3

x2z3

x2
2z3

x3
2z3

2·2·

3·3·

Case 2: n even. Let’s write n = 2k. Then the Serre spectral sequence for the fiber sequence
K(Z, 2k − 1) → P≥2k+1S2k → S2k only has two rows, according to Lemma 2.4. It follows that
the reduced rational cohomology of P≥2k+1S2k is Q in degree 4k − 1. In other words, the rational
cohomology of P≥2k+1S2k is that of S4k−1. By the rational Hurewicz theorem, we conclude that
the homotopy groups of P≥2k+1S2k are finite below degree 4k − 1 and that π4k−1(P≥2k+1S2k) is
the direct sum of Z and something finite. It follows that any map S4k−1 → P≥2k+1S2k picking
out a non-torsion element of homotopy will induce an isomorphism on rational homology and
therefore an isomorphism on rational homotopy. But we have already shown that S4k−1 has no
higher rational homotopy groups. ■

Fri, Jan. 26

2.1. Rationalization. We can rationalize a space or spectrum by inverting all primes. In other
words, for X ∈ Sp, we write

XQ = hocolim
(

X 2−→ X 2·3−→ X 2·3·5−−→ X 2·3·5·7−−−→ X 2·3·5·7·11−−−−−→ . . .
)

.

Proposition 2.5. For X ∈ Sp, the homotopy of XQ is πn(XQ) ∼= πn(X)⊗ Q.

Proof. The key point is that homotopy interacts well with homotopy colimits, as was mentioned
on Worksheet 2.

πn

(
hocolim X 2−→ X 2·3−→ X 2·3·5−−→ . . .

)
∼= colim

(
πnX 2−→ πnX 2·3−→ πnX 2·3·5−−→ . . .

)
∼= πn(X)⊗ Q. ■

Then Theorem 2.2 can be summarized as

Corollary 2.6. The rationalization of S is SQ ≃ HQ.

Rationalization is a type of localization. We will see other examples, so let’s describe rational-
ization in the language that we will use for other examples. We first observe that, since smashing
with a fixed spectrum commutes with sequential homotopy colimits, we have an equivalence

(2.1) XQ ≃ SQ ∧ X.

By Corollary 2.6, it follows that the (stable) homotopy of XQ is the rational homology of X.

Definition 2.7. We say a spectrum X is rationally acyclic if XQ ≃ SQ ∧ X is null (stably equivalent
to the one-point spectrum).

Corollary 2.8. A spectrum X is rationally acyclic if and only if πn(X)⊗ Q ∼= Hn(X; Q) is zero for all n.
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Mon, Jan. 29

Definition 2.9. Say a spectrum Y is Q-local, or rational, if [X, Y] = 0 for all Q-acyclic X.

Proposition 2.10. A spectrum Y is Q-local if and only if πn(Y) is a rational vector space for all n.

In the course of this proof, we will use that SQ ≃ HQ is a ring spectrum. There are many
interpretations of this term. For now, all we mean is that we have a monoid in HoSp. Thus we
require maps

η : S → R, µ : R ∧ R → R
that satisfy appropriate unit and associativity laws. This is now often called a homotopy ring
spectrum, to distinguish it from a point-set level monoid in Sp. We will typically refer to these as
h-ring spectra in this course. If R is a h-ring spectrum, an R-module will mean a spectrum M with
a map R ∧ M −→ M in HoSp that satisfies appropriate unit and associativity laws.

Proof. Suppose that Y is Q-local. For any n, we want to show that πn(Y) is a rational vector space.
It suffices to show that multiplication by any integer k induces an isomorphism on πn(Y). This

follows from the long exact sequence arising from mapping the cofiber sequence Sn k−→ Sn → Sn/k
into Y, since Sn/k is Q-acyclic.

On the other hand, suppose that πn(Y) is a rational vector space for all n. Then every map in
the system defining the homotopy colimit YQ is an equivalence, so that Y → YQ is an equivalence.
Now we use that YQ ≃ SQ ∧ Y is an SQ ≃ HQ-module. Then we have

[X, Y] ∼= [X, YQ] ∼= [X, SQ ∧ Y] ∼= [SQ ∧ X, SQ ∧ Y]SQ−Mod.

However, SQ ∧ X is contractible by assumption, so we conclude that this hom set vanishes. ■

The argument we just used also shows the following.

Example 2.11. For any spectrum X, the spectrum XQ is Q-local.

Definition 2.12. A map of spectra f : X → Y is a rational equivalence if the induced map πn(X)⊗
Q → πn(Y)⊗ Q is an isomorphism for all n. Equivalently, f is a rational equivalence if H∗( f ; Q)
is an isomorphism.

Example 2.13. For any spectrum X, the map X → XQ is a rational equivalence.

Proposition 2.14. Let W → X be a rational equivalence, and suppose that Y is Q-local. Then the induced
map [X, Y] → [W, Y] is an isomorphism.

Proof. Since W → X is a rational equivalence, it follows that the fiber F is rationally acyclic (this
is actually equivalent to the map being a rational equivalence). The long exact sequence in [−, D]
from the cofiber sequence F → W → X then gives the result. ■

Remark 2.15. Proposition 2.14 is in fact an if-and-only if. Suppose that Y thinks that every Q-
local equivalence is a stable equivalence, and let X be Q-acyclic. The map X → XQ is a Q-local
equivalence, so [X, Y] ∼= [XQ, Y] ∼= 0 since XQ ≃ ∗ by the assumption that X is Q-acyclic.

One way to think about this is that if Y is Q-local, then as a cohomology theory, it sees no more
than HQ. Another important point is that if we consider the subcategory of HoSp consisting of
Q-local spectra, then the rational equivalences coincide with the stable equivalences.

Definition 2.16. A map X
f−→ Y is said to be a Q-localization, or rationalization, if (1) Y is Q-local

and (2) f is a rational equivalence.

It follows from Example 2.11 and Example 2.13 that X → XQ is a rationalization in the sense of
Definition 2.16.
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Wed, Jan. 31

3. TOWARDS v1-PERIODICITY, OR WHAT K-THEORY KNOWS

We discussed the rational part of the homotopy groups of spheres last week. This is known as
the “height 0” information. The higher height information is studied one prime at a time. From
now on we will be working p-locally.

The theory for this is nearly identical to what we studied in the recent lectures. The p-
localization of X is a spectrum X(p) with πnX(p) = πnX ⊗ Z(p), where Z(p) ⊂ Q consists of
fractions whose denominators are coprime to p. On both the algebraic and the homotopical sides,
this is obtained by inverting all primes except for the chosen prime p. In effect, this allows us to
ignore all torsion except for p-torsion.

Definition 3.1. The p-local stable homotopy category HoSp(p) is obtained from HoSp by inverting
the p-local equivalences. It is equivalent to the full subcategory of HoSp on the p-local spectra.

The height 1 part of the homotopy groups of spheres is called v1-periodic. Rational information
is also called v0-periodic. The element v0 simply means the prime p. The point is that for a p-local
spectrum, then rationalization is the same as just inverting v0 = p.

The element v1 comes from KU. We previously described the homotopy groups of KU in Ex-
ample 1.10. But in fact there is more structure. KU is a commutative h-ring spectrum, so that its
homotopy is a commutative ring. Indeed, the homotopy of KU is a ring of Laurent polynomials
in the Bott element:

π∗(KU) ∼= Z[β±1],
where β ∈ π2(KU).

Convention 3.2. The element v1 will denote the power βp−1 of the Bott element.

In particular, if p is 2, then v1 is simply the Bott element β. One reason for focusing on v1 rather
than β is the following.

Theorem 3.3. [A1] Fix a prime p. There is an h-ring spectrum L with π∗L ∼= Z(p)[v
±1
1 ] and v1 in degree

2(p − 1) and with
KU(p) ≃ L ∨ Σ2L ∨ · · · ∨ Σ2(p−2)L.

We will sketch this in the case p = 3 (it is vacuous in the case p = 2). We will use the Adams
operation ψ−1 : KU → KU. This is a map of h-ring spectra such that ψ−1(βn) = (−1)nβn. If we

invert 2, then we can define an endomorphism of KU
[ 1

2

]
by the formula e = id+ψ−1

2 . This is an
idempotent, meaning that e2 = e. It follows that id − e is also an idempotent.

The idea now is that we want to decompose KU
[ 1

2

]
into two spectra: the image of e and the

image of id − e (the latter is the kernel of e). This follows from the following more general con-
struction.

Proposition 3.4. Let e : X −→ X be an idempotent endomorphism, meaning that e ◦ e = e. Then there
are spectra Xe and X1−e and an isomorphism X ≃ Xe ∨ X1−e in HoSp.

Proof. We define the spectra Xe and X1−e as homotopy colimits:

Xe = hocolim
(

X e−→ X e−→ X e−→ . . .
)

and
X1−e = hocolim

(
X 1−e−−→ X 1−e−−→ X 1−e−−→ . . .

)
12



Then, since the homotopy of a directed homotopy colimit is the colimit of the homotopy, it follows
that π∗(Xe) is the image of e∗ : π∗X → π∗X and similarly for π∗(X1−e).

Now the maps e∗ and (1 − e)∗ are idempotents of the groups πnX that give rise to an algebraic
splitting. Moreover, the map X −→ Xe ∨ X1−e induces the projection from πnX to each of the
summands and is therefore an isomorphism. ■

The summand KU
[ 1

2

]
e is traditionally called L.

Proposition 3.5. The homotopy of L is given by π∗L ∼= Z
[ 1

2

]
[β±2].

Proof. As we indicated in the proof of Proposition 3.4, this is merely a matter of computing e∗ on
KU
[ 1

2

]
. Since ψ−1β = −β, it follows that e wipes out the odd powers of β and is the identity on

even powers. ■

Fri, Feb. 2

It turns out that the other summand is also a (shifted) copy of L.

Proposition 3.6. The summand KU
[ 1

2

]
1−e is isomorphic to Σ2L.

Proof. Recall that Σ2KU ≃ KU. Moreover, as ψ−1 multiplies the odd powers of β by −1 and the
even powers by 1, the opposite is true of Σ2ψ−1. In other words, Σ2ψ−1 ≃ −ψ−1, so that the roles
of e and 1 − e are interchanged by Σ2. The result follows. ■

13



Mon, Feb. 5

Our goal now is to use KU(p), or equivalently the Adams summand L, to learn about S(p). One
way to do this is to again use the technology of localization.

4. BOUSFIELD LOCALIZATION

Previously, we considered localization at SQ ≃ HQ. Bousfield showed [Bo] that one can more
generally localize at any spectrum E. Let us now fixed a choice of E ∈ HoSp.

Definition 4.1. We say a spectrum X is E-acyclic if E ∧ X ≃ ∗. A map of spectra X
f−→ Y is an

E-equivalence if E ∧ X id∧F−−→ E ∧ Y is a stable equivalence. A spectrum Z is E-local if [X, Z] = 0
for all E-acyclic spectra X.

In parallel to Proposition 2.14, we have:

Proposition 4.2. Let W → X be an E-equivalence, and suppose that Y is E-local. Then the induced map
[X, Y] → [W, Y] is an isomorphism.

Definition 4.3. A map X
f−→ Y is said to be an E-localization if (1) Y is E-local and (2) f is an

E-equivalence.

We often write LEX for the E-localization of X.

Definition 4.4. We define the E-local stable homotopy category HoSpE to be the full subcategory
of HoSp on the E-local spectra.

Theorem 4.5 ([Bo]). Let E ∈ HoSp. There is an adjunction

LE : HoSp⇄ HoSpE : ι

such that each component η : X −→ ιLEX of the unit for the adjunction is an E-localization.

Much of what we discussed for rationalization works as well for E-localization. For example,
the proof of Proposition 2.10 applies to show

Proposition 4.6. Suppose that E is an h-ring spectrum. Then any E-module is E-local.

Another way to establish that a spectrum is E-local is to exhibit it as the (co)fiber of a map
between E-local spectra:

Proposition 4.7. Suppose that W → X → Y is a cofiber sequence in HoSp. Then if two of W, X, and Y
are E-local, then so is the third.

There is one important way in which rationalization differs from most localizations.

Definition 4.8. Let E ∈ HoSp. We say that LE is a smashing localization if

X ∼= S ∧ X
η∧id−−→ LES ∧ X

is an E-localization, so that LEX ≃ LE(S) ∧ X.

Thus rationalization is an example of a smashing localization, but we will see that this does not
hold for many localizations.

Wed, Feb. 7

One important example of localization is the case of E = S/p. Recall that the cokernel of the
inclusion Z ↪→ Z[1/p] is sometimes denoted Z/p∞. The reason is that it can be written as

Z/p∞ ∼= colim
n

Z/pn,
14



where each map Z/pn → Z/pn+1 is multiplication by p. We similarly have a cofiber sequence

S → S[1/p] → S/p∞,

where S/p∞ = hocolimn S/pn. Rotating this gives a cofiber sequence

S−1/p∞ → S → S[1/p].

Now, for any X, applying F(−, X) to this cofiber sequence produces a fiber sequence

F(S[1/p], X) → F(S, X) → F(S−1/p∞, X).

This middle term is isomorphic to X.

Proposition 4.9. The spectrum F(S−1/p∞, X) is a localization of X at S/p. In other words,

LS/pX ≃ F(S−1/p∞, X) ≃ holim
n

X/pn.

Proof. First, we show that F(S[1/p], X) is S/p-acyclic. This just means that multiplication by p is
a stable equivalence. But that is true for S[1/p], and so the same is true for the mapping spectrum
F(S[1/p], X).

Next, we wish to see that F(S−1/p∞, X) is S/p-local. Thus let W be S/p-acyclic, in other words
p-periodic. We wish to know that

[W, F(S−1/p∞, X)] ∼= [W ∧ S−1/p∞, X] ∼= [W ∧ hocolim
n

S−1/pn, X]

vanishes. But smash commutes with sequential homotopy colimits, and W ∧S−1/pn is contractible
for all n, since W is pn-periodic, being already p-periodic. This establishes F(S−1/p∞, X) as a
localization of X.

In order to get the alternative description, we use that the mapping spectrum construction
converts a homotopy colimit in the first variable into a homotopy limit. Thus F(S−1/p∞, X)

is equivalent to holimn F(S−1/pn, X). But now the cofiber sequence S−1/pn → S
pn

−→ S gives
F(S−1/pn, X) ≃ X/pn. ■

The alternative description suggests that S/p-localization has to do with the p-adics, which are
the inverse limit of the groups Z/pn.

Proposition 4.10. [Bo, Proposition 2.5] If the homotopy groups of X are finitely generated, then
πnLS/pX ∼= πnX ⊗ Z∧

p .

We therefore will write X∧
p := LS/pX. This is related to rationalization via the following fracture

square.

Proposition 4.11. Let X be a spectrum. Then the square

X(p) X(p)[1/p] ≃ XQ

X∧
p (X∧

p )Q

is a homotopy pullback square.

This means that we get a Mayer-Vietoris style long exact sequence in homotopy. We will deduce
the fracture square from a more general result.

Fri, Feb. 9

We can use the fracture square to show
15



Proposition 4.12. If X is connective (or bounded below), then LHFp X ≃ LS/pX.

Proof. First, note that HZ ∧ S/p ≃ HFp. Thus any S/p-acyclic W spectrum is also HFp-acyclic. It
follows that LHFp X is S/p-local.

It remains to show that ηHFp : X −→ LHFp X is an S/p-equivalance. First, we claim that since
X is connective, it follows that X is HZ-local. The point is to use the dual Postnikov tower. Any
Eilenberg-Mac Lane spectrum HA is an HZ-module and is therefore HZ-local. Then we can write
each Postnikov section in a fiber sequence ΣnHπnX → Pn

0 X → Pn−1
0 X, and by induction it follows

that Pn
0 X is HZ-local. Then X is the homotopy inverse limit of the Pn

0 X, and it follows that X is
HZ-local.

So now we can replace X with LHZX. For simplicity, we will assume that X is p-local, in which
case we can replace X with LHZ(p)X. There is a fracture square

LHZ(p)X XQ

LHFp X (LHFp X)Q

that is similar to the one mentioned last time. But now the right vertical map is an S/p-
equivalence, since any rational spectrum is S/p-acyclic. It follows that the left vertical map is
an S/p-equivalence. ■

16



Mon, Feb. 12

We have seen a couple of instances of fracture squares. Many of them can be derived from the
following general result.

Proposition 4.13. [DFHH, Chapter 6, Proposition 2.2] Let D, and E be spectra. Suppose that for all
spectra Z, if D∗(Z) vanishes, then so does D∗(LEZ). Then for all spectra X, the square

LD∨EX LEX

LDX LE(LDX)

i

j LE(ηD)

ηE

is a homotopy pullback square.

Note that the maps i and j exist becuase both LDX and LEX are D ∨ E-local.

Proof. Let f : X −→ P be the map to the homotopy pullback. We will show that this is the local-
ization with respect to D ∨ E.

First, let W be D ∨ E acyclic, meaning D-acyclic and E-
acyclic. Then there are no maps from W to the other three ver-
tices of the square, so by the Mayer-Vietoris sequence, there
are no maps from W to P. Thus P is D ∨ E-local.

It remains to show that the map f is a D ∨ E-equivalence,
which means precisely that it is a D-equivalence and an E-
equivalence. We start with E, since that argument is slightly
simpler. First, notice that since the E-equivalence X −→ LEX
factors through P, it suffices to show that P −→ LE(X) is an E-
equivalence. By the Mayer-Vietoris sequence in E-homology,

X

P LEX

LDX LE(LDX)

f

ηE

ηD

this is equivalent to the map LDX −→ LE(LDX) being an E-equivalence, which is true by the
definition of E-localization.

Similarly, the map f being a D-equivalence reduces to the map LEX −→ LE(LDX) being a D-
equivalence. But the fiber NilDX of η : X −→ LDX is D-acyclic. It follows, by the assumption, that
the fiber LE(NilDX) of LEX −→ LE(LDX) is D-acyclic. ■

We will now use this to prove Proposition 4.11

Proof of Proposition 4.11. We take D = S/p and E = HQ. Here we get that (S/p)(ZQ) vanishes,
even without the assumption that (S/p)∗(Z) vanishes. It remains to show that localization at
S/p ∨ HQ is localization at p. For this it suffices to see that the class of acyclics for S/p ∨ HQ is
the same as the acyclics for S(p). But acyclics for HQ are spectra with torsion homotopy groups,
whereas acyclics for S/p have p-periodic homotopy. Thus acyclics for S/p ∨ HQ have homotopy
that is torsion but with no p-torsion. These are precisely the acyclics for S(p). ■

Wed, Feb. 14

5. BOUSFIELD LOCALIZATION AT KU(p)

Again, our goal is to use KU, or KU(p), to learn about S(p). One way to do this is to use Bous-
field localization. Since KU(p) splits into copies of the Adams summand L (by Theorem 3.3), it is
equivalent to localize at L.

First, we need one preliminary result.
17



Lemma 5.1. Suppose that E is a spectrum such that EQ is nontrivial. Then LEQ
agrees with LHQ. In other

words, localization at any (nontrivial) rational spectrum is rationalization.

Proof. The point is that any rational spectrum automatically decomposes into a sum of (suspen-
sions of) HQ. Said differently, the functor π∗ : HoSpQ −→ grVectQ is an equivalence of categories.

To see this, note that if F = EQ is a rational spectrum then for any n ∈ Z we can build a map
ΣnHπn(X) −→ F inducing an isomorphism on πn. The reason is that we have an equivalence∨

Sn
Q ≃ ΣnHπn(F), where the wedge can be indexed over a basis of the Q-vector space πn(F).

Now we can assemble these into a stable equivalence
∨

n ΣnHπn(F) ∼−→ F.
Now the statement about localizations follows because a spectrum will be F-acyclic if and only

if it is HQ-acyclic. ■

Notation 5.2. Write E(1) = L and K(1) = L ∧ S/p ≃ L/p. It is common to abbreviate LE(1) to L1

and LK(1) to L̂1.

Proposition 5.3. For any X, there is a homotopy pullback square

L1X XQ

L̂1X (L̂1X)Q

Proof of Proposition 5.3. We will use Proposition 4.13, with D = K(1) = L/p and E = L[1/p] =
LQ. Note that the proposition applies, since K(1)∗ vanishes on any rational spectrum (because
S/p annihilates rational spectra). Also, Lemma 5.1 shows that localization at LQ is the same as
rationalization.

Then the main task is to identify E(1)-localization with K(1)∨ LQ-localization. Again, it suffices
to see that the acyclics for both localizations agree. But now we can use the same argument as in
the proof of Proposition 4.11. There we showed that a p-local spectrum is null if and only if it
is acyclic for both S/p and HQ. Since L is p-local, it follows that L ∧ W is null if and only if
L ∧ S/p ∧ W and L ∧ SQ ∧ W are null. ■

Notation 5.4. Given spectra E and D, we write ⟨E⟩ for the set of E-acyclics. Thus a way to sum-
marize what we showed in the proof of Proposition 5.3 is that ⟨E(1)⟩ = ⟨K(1) ∨ HQ⟩. Or, equiva-
lently, ⟨KU(p)⟩ = ⟨KU/p ∨ HQ⟩.

Remark 5.5. On the worksheet for this week, you will show that L̂1X is in fact (L1X)∧p , which
partly explains the notation.

Thus, in order to understand L1S, it remains to first calculate L̂1S.

Fri, Feb. 16
We will just mention some notation. As we said previously, ⟨E⟩ will denote the set of E-acyclics.

We can define an equivalence relation on spectra by saying that E ∼ F if ⟨E⟩ = ⟨F⟩. The equiva-
lence class of E is referred to as the Bousfield class of E.

It is also common to write ⟨E⟩ ∨ ⟨F⟩ for ⟨E ∨ F⟩ and similarly ⟨E⟩ ∧ ⟨F⟩ for ⟨E ∧ F⟩. Thus, in the
proof of Proposition 5.3, we showed that

⟨E(1)⟩ = ⟨K(1)⟩ ∨ ⟨K(0)⟩,
where K(0) = E(0) means HQ.

18



Mon, Feb. 19

The K(1)-local sphere L̂1S looks a little different at odd primes than at the prime 2. We first state
the (easier) odd-primary case.

Proposition 5.6. If p is odd, then the fiber of E(1)∧p
ψp+1−id−−−−→ E(1)∧p is L̂1S.

We will not prove this. It is easy to see that the fiber is K(1)-local. Since E(1) is E(1)-local,
it follows that the fiber of ψp+1 − id on E(1) (in other words, before p-completion) is E(1)-local.
Then passing to p-completion makes it K(1)-local. On the other hand, showing that the fiber has
the right K(1)-homology is not so simple, given what we have covered so far.

Let’s now use Proposition 5.6 to calculate π∗ L̂1S (aka the “K(1)-local sphere”).

Example 5.7. Consider the case of p = 3. Then the homotopy of E(1)∧3 is Z3[v±1
1 ], with v1 in

degree 4. We are left to consider the map (ψ4 − id)∗ : π4nE(1)∧3 −→ π4nE(1)∧3 . Recall that the
Adams operation ψk acts as multiplication by k on the Bott element β. The case of ψ−1 came up in
the discussion of Theorem 3.3. As v1 is βp−1 = β2, it follows that ψk acts as multiplication by k2n

on vn
1 . Thus the difference ψp+1 − id = ψ4 − id acts on the element vn

1 as multiplication by 42n − 1.
In degree 0, this is the zero map, so that we conclude

π0 L̂1S ∼= Z3 and π−1 L̂1S ∼= Z3.

In other degrees, the map is injective, so that the cokernel calculates π4n−1 L̂1S, and the other
homotopy groups vanish.

We now have an isomorphism

π4n−1 L̂1S ∼= coker
(

Z3
42n−1−−−→ Z3

)
, for n ̸= 0.

However, 42n − 1 = 16n − 1 = (4n − 1)(4n + 1), and 4n + 1 is a unit in Z3, since it is not a multiple
of 3. So the cokernel will be isomorphic to the cokernel of multiplication by 4n − 1. This cokernel
will be Z/3ν3(4n−1), where ν3(4n − 1) is the 3-adic valuation of 4n − 1.

We claim that ν3(4n − 1) is equal to ν3(n) + 1, so that

π4n−1 L̂1S ∼= Z/3ν3(n)+1, for n ̸= 0.

Writing ∂ : πnE(1)∧p −→ πn−1 L̂1S, we have

π3 L̂1S ∼= Z/3{∂v1}, π7 L̂1S ∼= Z/3{∂v2
1}, π11 L̂1S ∼= Z/9{∂v3

1},

π15 L̂1S ∼= Z/3{∂v4
1}, π19 L̂1S ∼= Z/3{∂v5

1}, π23 L̂1S ∼= Z/9{∂v6
1},

π27 L̂1S ∼= Z/3{∂v7
1}, π31 L̂1S ∼= Z/3{∂v8

1}, π35 L̂1S ∼= Z/27{∂v9
1},

and so on.
One way to argue the claim is as follows. We wish to find the largest k for which the congruence

4n ≡ 1 (mod 3k) holds. Thus we want the order of 4 in the unit group (Z/3k)× to divide n. But we
have a group isomorphism (Z/3k)× ∼= C2 × C3k−1 . The binomial expansion on 43k−2

= (3 + 1)3k−2

shows that it is not congruent to 1 modulo 3k, so that 4 projects to a generator of C3k−1 . Since it
projects to the identity element of C2, we conclude that the order of 4 in (Z/3k)× is exactly 3k−1.
To sum up, we have shown that 4n ≡ 1 (mod 3k) holds precisely when 3k−1 divides n. Thus the
3-adic valuation of n is one less than the 3-adic valuation of 4n − 1.

Wed, Feb. 21

The arguments of this example generalize to give:
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Proposition 5.8. Let p be an odd prime. Then the homotopy of the K(1)-local sphere is

πkLK(1)S = πk L̂1S ∼=


Zp k = 0,−1
Z/pνp(n)+1 k = 2(p − 1)n − 1 (for k ̸= −1)
0 else.

We can then use the fracture square to get the homotopy of the E(1)-local sphere.

Corollary 5.9. Let p be an odd prime. Then the homotopy of the E(1)-local sphere is

πkLE(1)S = πkL1S ∼=


Z(p) k = 0
Z/p∞ k = −2
Z/pνp(n)+1 k = 2(p − 1)n − 1 (for k ̸= −1)
0 else.

Proof. This mostly follows easily from the fracture square, given that SQ ≃ HQ. The answer for
π0 follows from the algebraic antecedent of Proposition 4.11. The answer for π−2 follows from the
isomorphism Qp/Zp ∼= Z/p∞. ■

Proposition 5.6 is not quite right at the prime p = 2. Instead of using an Adams operation on
KU∧

p , we instead use KO∧
2 .

Proposition 5.10. The fiber of KO∧
2

ψ3−id−−−→ KO∧
2 is 2-primary L̂1S.

Recall that KO is periodic real K-theory. Its homotopy ring is

π∗(KO) ∼= Z[η, α, β±1]/(2η, η3, ηα, α2 − 4β)

with η, α, and β in degrees 1, 4, and 8, respectively. As in Proposition 5.6, we will not prove that
the fiber is K(1)-equivalent to the sphere. The fact that it is K(1)-local follows from the fact that
the fiber of ψ3 − id on KO(2) is KU(2)-local. This uses the following.

Proposition 5.11. The spectra KO and KU are Bousfield equivalent.

Proof. This uses the Wood cofiber sequence

Σ1KO
η−→ KO −→ KU.

Here η ∈ π1S is the Hopf map. Thus another way to write this cofiber sequence is to say that
S/η ∧ KO is KU. If follows that any KO-acyclic is KU-acyclic. On the other hand, if X is KU-
acyclic, it follows that η acts as a stable equivlence on KO ∧ X. But η3 is zero in KO, so it follows
that X is also KO-acyclic. ■

Proposition 5.12. The homotopy of the 2-primary K(1)-local sphere is

πkLK(1)S = πk L̂1S ∼=



Z2 ⊕ Z/2 k = 0
Z2 k = −1
Z/2 ⊕ Z/2 k ≡ 1 (mod 8)
Z/2 k ≡ 0, 2 (mod 8) (for k ̸= 0)
Z/2ν2(n)+3 k = 4n − 1 (for k ̸= −1)
0 else.

Again, the fracture square gives
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Corollary 5.13. The homotopy of the 2-primary E(1)-local sphere is

πkLE(1)S = πkL1S ∼=



Z(2) ⊕ Z/2 k = 0
Z/2∞ k = −2
Z/2 ⊕ Z/2 k ≡ 1 (mod 8)
Z/2 k ≡ 0, 2 (mod 8) (for k ̸= 0)
Z/2ν2(n)+3 k = 4n − 1 (for k ̸= −1)
0 else.

Ok, we have computed L1S, but what does this tell us?

Proposition 5.14. If X is E(1)-local, then the homotopy of X/p is v1-periodic.

What do we mean by this? It turns out that S/p has a “v1-self-map” in the following sense.

Proposition 5.15 ([A2]). (The v1-self-map on S/p) Let p be an odd prime. Then there exists a map
v1 : Σ2(p−1)S/p −→ S/p which induces multiplication by v1 on E(1)-homology. For p = 2, there is a
map v4

1 : Σ8S/2 −→ S/2 which induces multiplication by v4
1 on E(1) = KU(2)-homology.

We will discuss this result soon. Now if this self-map induces a stable-equivalence on X/p, we
say that the homotopy of X/p is v1-periodic.

Fri, Feb. 23

Proof of Proposition 5.14. Suppose that X is E(1)-local. By the 2-out-of-3 property, it follows that
X/p is E(1)-local. Notice that the v1-self-map on S/p is an E(1)-equivalence, so it follows that
this gives an E(1)-equivalence on X/p ∼= S/p ∧ X. But an E(1)-equivalence between E(1)-local
spectra is a stable equivalence. ■

In turn, v1-periodicity implies locality.

Notation 5.16. Write Tel(1) = S/p[v−1
1 ].

This is also often simply written as T(1).

Proposition 5.17. Any K(1)-local spectrum is Tel(1)-local. In other words, we have ⟨Tel(1)⟩ ≥ ⟨K(1)⟩.
This applies, for instance, to X/p when X is E(1)-local.

Proof. Let W be Tel(1)-acyclic. Thus W/p[v−1
1 ] ≃ ∗. As in the proof of Proposition 5.14, we know

that Σ2(p−1)W/p
v1−→ W/p induces an isomorphism E(1)∗(W/p) ∼= E(1)∗+2(p−1)(W/p), or in other

words K(1)∗W ∼= K(1)∗+2(p−1)W. On the other hand, the colimit

colim
(

K(1)∗W
∼=−→ K(1)∗+2(p−1)W

∼=−→ . . .
)

∼= colim
(

E(1)∗W/p
∼=−→ E(1)∗+2(p−1)W/p

∼=−→ . . .
)

∼= E(1)∗
(

hocolim W/p
v1−→ Σ−2(p−1)W/p

v1−→ . . .
)
∼= 0

vanishes by the assumption on W. It follows that K(1)∗W = 0. ■
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In fact, more is true.

Theorem 5.18 ([Bo], [Ma], [Mi]). (Height 1 Telescope Conjecture) Tel(1)-localization is K(1)-
localization.

Bousfield deduced this from calculations of Mahowald (at p = 2) [Ma] and later Miller (at odd
primes) [Mi].
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Mon, Feb. 26

Proposition 5.19. [MRS] The height 1 telescope conjecture is equivalent to the statement that Tel(1) =
S/p[v−1

1 ] is L1S/p = L̂1S/p.

On the last worksheet, working at p = 3 you computed that πnL1(S/3) is Z/3 if n is con-
gruent to 0 or -1 modulo 4, and it vanishes otherwise. Thus the homotopy groups have a 4-fold
periodicity. But it is not at all obvious that this agrees with S/3[v−1

1 ]!

6. THE v1-SELF-MAP ON S/p

We will now discuss a proof of Proposition 5.15. The main tool here is the Adams spectral
sequence.

Roughly, the idea for the Adams spectral sequence is as follows. Let’s say we have spectra X
and Y, and we would like to understand the graded abelian group [X, Y]∗. For example, X and
Y could both be S! A simpler thing is to choose some nice homology theory E and consider the
simpler graded abelian group Hom(E∗(X), E∗(Y)). For example, we could take E = HFp. Then
we might ask to what extent we can recover [X, Y]∗ from Hom(E∗(X), E∗(Y)).

The answer to this simple question is: not much. But we can ask a better question. First of all, if
f : X −→ Y is a map of spectra, then we expect more structure on the map f∗ : E∗(X) −→ E∗(Y).
For starters, let us choose a nice, multiplicative homology theory E∗. This corresponds to the
spectrum E being a commutative h-ring spectrum. Then E∗(X) will be an E∗-module, and the
induced map f∗ will be a map of E∗-modules, so we should restrict our attention to E∗-linear
maps E∗(X) −→ E∗(Y). But there is more.

Temporarily, let us switch to cohomology. Then E∗(X) also has an action by the ring of stable E-
cohomology operations, written E∗E. In the case that E is HFp, this is the mod p Steenrod algebra
Ap. Now the map f ∗ : E∗(Y) −→ E∗(X) will be both an E∗-module map and an E∗E-module
map. So we should further restrict attention to the set HomE∗E(E∗Y, E∗X) of E∗E-module maps in
E∗-modules.

But we still don’t get much in the case of E = HFp and X = Y = S. HF∗
pS is just Fp in a single

degree, and so there are not many maps. Instead, we can consider the derived set of maps, which
means Ext groups.

In the case of HFp, this idea turns out to work well. But for a general E, it turns out there
are a number of technical hurdles, which make working with cohomology not a great choice. See
[A1, pages 51-55] for some good discussion of this. It turns out to be better to go back to homology.
Rather than working with the ring E∗E of cohomology operations, it is better to work with the
ring E∗E = π∗(E ∧ E), sometimes called the ring of homology “co-operations”. With some mild
assumptions, the ring E∗E acquires a coalgebra structure, and E∗X becomes a “comodule” over
this coalgebra. The general Adams spectral sequence will use comodule Ext as the starting point.

Wed, Feb. 28

For our current application of finding the v1-self-map on S/3, the original Adams spectral se-
quence, based on HFp, will suffice. We will write H∗(X) for H∗(X; Fp) and Ap for the mod p
Steenrod algebra.

Theorem 6.1. Let X be connective (or bounded below). There is a spectral sequence (the Adams spectral
sequence) having E2-term ExtAp(H

∗(X), Fp) and converging to π∗LHFp X = π∗X∧
p .

There are several ways to grade the spectral sequence. First of all, Ext has its won grading (the
“homological” grading, traditionally written as s). And since the input module H∗(X) is graded,
there is an additional grading (the “internal grading”, traditionally written as t). However, we
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will use the spectral sequence to tell us about a stable homotopy group πn, so it is convenient to
regrade, so that the part of the grading contributing to the stable “stem” πn is kept together. It
turns out that this is the difference

stem = internal degree − homological degree.

Also, the homological degree is also called the “Adams filtration”. We will then use the index s
for stem and f for Adams filtration. With this notation, the Adams spectral sequence looks like

Es, f
2 = Exts, f

Ap
(H∗X, Fp) ⇒ πs(X∧

p ).

The d2 differential takes the shape d2 : Es, f
2 −→ Es−1, f+2

2 , and more generally we have

dr : Es, f
r −→ Es−1, f+r

r .

In other words, Adams differentials go left one and up r.
Here is the Adams spectral sequence for S, at p = 3, in low degrees:

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

f

s

1

a0 h0
h1

g1
b0

The vertical lines depict multiplication by the element a0, which here detects
the element 3 in π0S. The slope 1/3 line depicts by the element h0, which
detects a 3-torsion element of π3(S).

Where does this answer come from? First, one must calculate the E2-term,
which is given by the Ext groups ExtA3(F3, F3). To start off, the mod p Steen-
rod algebra, for p odd, is generated by elements

β ∈ A1
p, P i ∈ A2i(p−1)

p .

modulo the “Adem relations”. In fact, the Adem relations tell you that the
algebra is generated by β and the P pk

as k varies. In particular, for p = 3, we
have β in degree 1, P1 in degree 4, P3 in degree 12, and so on. Some examples
of the Adem relations in this case are that

ββ = 0, P1βP1 = 2βP1P1 + 2P1P1β, and P1P1P1 = 0.

The portion of A3 in degrees up to 12 is depicted to the right, where each line
corresponds to left multiplication by some element. The element 1 is at the
bottom.

2

2

β

P1

P3

Now ExtA3(F3, F3) can be computed as the cohomology of HomA3(P•, F3), where P• is a free
(or projective) resolution of F3 as A3-modules. We can explicitly build a free resolution as follows:

24



0

2

4

6

8

10

12

2

2

1

2

2

a0

⊕

2

2

h0

⊕

2

2

h1

2

2

a20

⊕

2

2

g1

⊕

2

2

b0

This is an example of what is called a “minimal” resolution, which means that when we take
this resolution and Hom it into F3, the resulting cochain complex will have all differentials zero.
Thus the generators 1, a0, h0, etc. that we see in the resolution give the elements of Ext displayed in
the above Adams chart. In addition, the above is not actually a resolution, in that a true resolution
would have a summand hn for each n ≥ 0 at stage 1. We have only displayed the part that is
relevant to the portion of the Adams E2-page displayed above.

Fri, Mar. 1

Last time, we saw from the Adams spectral sequence that π3(S∧
3 )

∼= Z/3 and π4(S
∧
3 ) = 0. It

follows from the long exact sequence that π4(S/3) ∼= Z/3. We may take either of the nonzero
elements as the element v1 : Σ4S −→ S/3. As it is a 3-torsion element and π5(S/3) = 0, it follows
that v1 extends to a map v1 : Σ4S/3 −→ S/3. To see that this induces an isomorphism on E(1)∗, it
suffices to see that the diagram

Σ4S S/3

Σ4E(1) E(1)/3 ≃ K(1)

v1

v1

commutes, where the vertical maps come from the unit of the ring spectrum E(1). This can be
seen from a comparison of Adams spectral sequences for S/3 and E(1) ∧ S/3 if we replace the
periodic Adams summand E(1) = L with its connective cover ℓ. The point is that one can identify
the E2-term of the Adams spectral sequence for ℓ∗X with ExtE(1)(H∗(X), Fp), where E(1) ⊂ Ap is
the exterior subalgebra generated by Q0 = β and Q1 = P1β − βP1.
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Mon, Mar. 4
Last time, we found a map v1 : Σ4S/3 −→ S/3,

and we said that one way to verify it induces an
isomorphism on E(1)∗ is to use a comparison of
Adams spectral sequences for S/3 and ℓ∧ S/3, for ℓ
the connective cover of E(1). The A3-module H∗(ℓ)
is known to be the quotient A3 ⊗E3(1) F3, where
E3(1) is the (exterior) subalgebra on Q0 = β in de-
gree 1 and Q1 = P1β − βP1 in degree 5. Using
a change-of-rings isomorphism, the comparison of
Adams spectral sequences takes the form

ExtA3(H
∗(S/3), F3) −→ ExtE3(1)(H

∗(S/3), F3),

on E2-pages. These are computed by taking free
A3 and E3(1)-module resolutions, respectively, of
H∗(S/3). Now the point is that if PA is the A3-
module resolution, it restricts to give a resolution
of E3(1)-modules as well, and we can then find a
comparison of resolutions PE(1) → PA, which will
induce the desired map on Ext.

Since the map will be 1 7→ 1 at the P0-level, it fol-
lows that, at the P1-level, the map will is given by
v1 7→ v1 − βh0 as indicated to the right. After ap-
plying HomE(1)(−, F3), we conclude that the map
ExtA3(F3, F3) → ExtE(1)(F3, F3) sends v1 to v1.

An A3-resolution of H∗(S/3):

0

2

4

6

8

10

12

2

2

1

2

2

h0

⊕

2

2

v1

An E3(1)-resolution of H∗(S/3):

0

2

4

6

8

10

12

1

v1

2

7. v1-PERIODIC ELEMENTS IN π∗S

We have described the homotopy of L1S as well as the related L1S/p ≃ v−1
1 S/p. Here, we want

to discuss how this relates to the original object of study, namely π∗S.
We start with the case of p = 3 (which is essentially the same as for any odd primes). We

start by displaying ExtA3(H
∗(S), F3) and ExtA3(H

∗(S/3), F3) (on the next page). Here is how we
are thinking about ExtA3(H

∗(S/3), F3). The degree 3 map on S is zero in H∗(S), since we are
taking coefficients in F3. Thus the rotated cofiber sequence S → S/3 → Σ1S induces a short exact
sequence on cohomology. This is a short exact sequence of A3-modules, which therefore gives rise
to a long exact sequence in Ext.

Thus the Ext group that we care about is one term in a long exact sequence in which the other
terms are ExtA3(H

∗(S), F3) and a suspended copy of the same. It turns out that the connecting
homomorphism in this long exact sequence corresponds to multiplication by the element a0. Thus
we can obtain the Ext group that we want by displaying two copies of ExtA3(H

∗(S), F3), one
shifted to the right by 1, and drawing a differential from a shifted copy of a class x to a0 · x. The
Ext group we want is essentially the resulting homology of this complex.
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Here are the Adams E2-pages, which are the same but with d2-differentials drawn in.
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This yields the following E3-pages. There are only a handful of longer differentials, so we have
also drawn those in on these charts.
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Finally, we display the E∞-pages here. On the chart for S, we highlight the classes that are
detected by L1S, in other words the classes that map nontrivially to L1S. On the chart for S/3, we
display the v1-multiplications, which highlights the v1-periodic elements.
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Here are the corresponding images for S/2. First, the Ext charts and Adams E2-pages:
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Next, we display the Adams E3-page and the E∞-page. On the chart for S, we highlight the
classes that are detected by L1S, in other words the classes that map nontrivially to L1S. On the
chart for S/2, we display the v4

1-multiplications, which highlights the v1-periodic elements.
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Wed, Mar. 6

8. MU AND FRIENDS

The complex cobordism spectrum MU plays a central role in chromatic stable homotopy theory.
We have delayed discussing it, but no longer!

Definition 8.1. Let E −→ B be a real vector bundle. If B is paracompact, then we may equip
E with a metric, so that in particular each fiber inherits a norm. Then we can consider the unit
sphere bundle S(E) ⊂ E defined by taking the unit sphere inside each fiber. Similarly, we have
the unit disk bundle D(E) ⊂ E defined by taking the fiberwise unit disk. Then the Thom space
of the bundle is defined as the quotient space

T(E) = D(E)/S(E).

Note that if the base space is just a point, then T(E) will be SdimE. More generally, we have

Proposition 8.2. Denoting by n the trivial bundle of rank n over B, we have a homeomorphism

T(n) ∼= ΣnB+.

More generally, we have
T(n ⊕ E) ∼= ΣnT(E).

So a Thom space can be thought of as a “twisted suspension” of B+. Indeed, the Thom isomor-
phism theorem says that, if E is orientable, then cohomology can’t tell the difference between T(E)
and ΣnB+. We defined Thom spaces for real bundles, but the same works for complex bundles
just as well. We will use this construction to define MU.

First recall that the classifying space BU(n) of the unitary group U(n) classifies rank n complex
vector bundles. In particular, it comes equipped with the universal rank n bundle γn.

Definition 8.3. The spectrum MU is defined by setting MU2n = T(γn), the Thom space of the
bundle over BU(n). The odd spaces are just taken to be the suspensions of the even spaces. It
remains to define the structure maps Σ2T(γn) → T(γn+1) from the suspension of the odd spaces
to the even ones. Consider the inclusion ι : U(n) ↪→ U(n + 1) given by A 7→ A ⊕ idC. In other
words, this takes an n × n unitary matrix A and produces the (n + 1) × (n + 1) unitary matrix
which is the block sum of A and the 1 × 1 matrix 1 ∈ U(1). Then passage to classifying spaces
induces Bι : BU(n) → BU(n + 1). Then the pullback ι∗γn+1 is γn ⊕ 1. In other words, we have a
diagram

E(γn ⊕ 1) E(γn+1)

BU(n) BU(n + 1).

γn+1

Bι

Applying the Thom space construction to this map of complex bundles gives the desired map
Σ2Tγn → Tγn+1.

The spectrum MU is an example of the more general notion of a Thom spectrum. It is called the
complex cobordism spectrum because the cohomology theory it represents is complex cobordism.
This was proved by Thom, though the connection to cobordism will not be relevant in this course.

What will be more important is the calculation of MU∗ = π∗MU. This was done independently
by Milnor and Novikov. It turns out that the Adams spectral sequence for MU collapses at E2 to
give:
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Theorem 8.4 (Milnor & Novikov). The homotopy groups of MU are given by

MU∗ ∼= Z[x1, x2, . . . ],

with xn ∈ π2n MU.

We have described the homotopy of MU as a (graded-)commutative ring. In fact, MU is a
connective, commutative h-ring spectrum. The ring structure arises from maps Tγn ∧ Tγk →
Tγn+k corresponding to direct sum of bundles.

Even better, MU was one of the first examples of what is known as an E∞-ring spectrum. This
is equivalent to being a strict commutative ring spectrum, i.e. a commutative monoid in the
point-set level category of spectra, rather than in the homotopy category.

If we are happy to work p-locally, then the spectrum MU breaks into smaller pieces. Quillen
defined an idempotent map of ring spectra MU(p)

e−→ MU(p).

Definition 8.5. The Brown-Peterson spectrum BP is defined as

BP = im(e) = hocolim(MU(p)
e−→ MU(p)

e−→ . . . ).

It is a commutative h-ring spectrum, with π∗BP ∼= Z(p)[v1, v2, . . . ], where vn ∈ π2(pn−1).

As we have seen before, we often write v0 for p ∈ π0BP ∼= π0MU.

Warning 8.6. While BP is a commutative h-ring, this is quite different from the harder question
of BP being a (strict) commutative ring spectrum, a.k.a. an E∞-ring spectrum. The question of
whether or not BP can be built as an E∞-ring was an open question for decades. In 2010, Basterra
and Mandell showed [BM] that BP admits an E4-multiplication. However, in 2018, Tyler Lawson
showed [L] that, at p = 2, BP does not admit the structure of an E12-ring spectrum. This was
extended by Andrew Senger [Sen], who showed that at an odd prime p, BP does not admit the
structure of an E2(p2+2)-ring spectrum.

Fri, Mar. 8

Last time, we said that MU∗ is the complex bordism ring and also said that this is isomorphic
to a polynomial ring Z[x1, x2, . . . ]. A natural question is whether there are good manifold repre-
sentatives for the bordism classes xi.

This becomes easier if we rationalize:

Proposition 8.7. The ring MU∗ ⊗ Q is generated by the classes [CPn], n ≥ 1.

It follows that the classes [CPn] ∈ MU2n are indecomposable, meaning that they cannot be
written as sums of products of elements of lower degree.

Since MU∗ itself is torsion free, the map MU∗ → MU∗ ⊗ Q is injective, but it is not the case that
the CPn’s give integral generators. The first few groups are

MU0 ∼= Z{1}, MU2 ∼= Z{CP1}, MU4
∼= Z{CP2, CP1 × CP1},

which implies that we could take x1 and x2 to be CP1 and CP2. However, CP3 cannot be taken
for x3: the quotient of MU6 modulo (CP1)3 and CP1 × CP2 and CP3 is of order 2.

A (redundant) set of generators is given by the Milnor hypersurfaces Hn,k ⊂ CPn × CPk of
(complex) dimension n + k − 1. Each Hn,0 is CPn−1, so this list includes all of the CPk’s. It turns
out that the element H2,2 + CP3 can be taken for x3.
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Mon, Mar. 18

Next, we wish to construct various spectra from BP by taking quotients and performing local-
izations. Localizations will preserve h-ring structures, but quotients are more subtle.

Here is a simple illustration of how taking quotients can break ring structures in spectra.

Example 8.8. Consider S/2, which is a quotient of the commutative h-ring S. Our intuition from
algebra would lead us to expect S/2 inherits a ring structure from that of S, but that is not the
case! To see this, consider a potential multiplication S/2 ∧ S/2 → S/2. We would want this to be
a unital multiplication, meaning that the composition

S/2 = S/2 ∧ S → S/2 ∧ S/2 → S/2

should be the identity map. However, passage to mod 2 cohomology shows this cannot happen.
The smash product S/2 ∧ S/2 is a complex with 4 cells, and the Kunneth theorem tells us that as
an A2-module, its cohomology looks like

.

But H∗(S/2) = is not a retract of this A2-module.
Said differently, the trouble is that the degree 2 map on S/2 is nonzero, so the S-module action

S/2 ∧ S → S/2 does not descend to a multiplication on S/2. We saw previously that not every
element of π∗S/2 is 2-torsion.

Remark 8.9. It was shown by Oka [O] that S/n is an h-ring spectrum if and only if n is not con-
gruent to 2 modulo 4 or congruent to ±3 modulo 9. It is furthermore commutative if n is either
odd or divisible by 8.

Remark 8.10. Recently, Robert Burklund [Bu] has shown that the Moore spectrum S/2k admits an
En-structure precisely when k is at least 3

2 (n + 1). For example, S/8 is an E1-ring, also known as
an A∞-ring spectrum. For p odd, he shows that S/pk is En precisely when k is at least n + 1.

The kinds of results stated in Remark 8.10 are much stronger than what we will need. We will
be happy to produce spectra as h-rings.

Ring structures can be inherited on quotients if we mod out by an element that is not a zero-
divisor. More generally, a sequence of elements (x1, x2, . . . ) in R∗ is called a regular sequence
if multiplication by xn is injective on the quotient R∗/(x1, . . . , xn−1) by the previous generators.
Recall that we write R/x for the cofiber of R x−→ R. Then we write R/(x1, x2) for (R/x1)/x2, and
similarly for more generators.

Proposition 8.11. If (x1, x2, . . . ) is a regular sequence in R∗, then

π∗ (R/(x1, x2, . . . )) ∼= R∗/(x1, x2, . . . )

Proof. We leave this as an exercise, but the main point is that the regular sequence assumption
means that the long exact sequences in homotopy for the cofibers turn into short exact sequences.

■

Theorem 8.12 ([St]). Let R be an E∞-ring spectrum such that π∗R is concentrated in even degrees. If
A∗ is the quotient of a localization of R∗ by a regular ideal and if 2 is invertible in A∗, then there exists a
commuative R-h-ring spectrum A with π∗A = A∗.
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Wed, Mar. 18

As Strickland’s theorem requires 2 to be invertible, we will suppose for the next few examples
that p is an odd prime.

Example 8.13 (Brown-Peterson spectrum). Recall that we described the Brown-Peterson spectrum
BP as a summand of the localization MU(p) of the E∞ ring MU. This spectrum can also be pro-
duced by Strickland’s theorem, if one shows that the kernel of MU∗ → BP∗ is generated by a
regular sequence.

Example 8.14 (Truncated Brown-Peterson spectra). Strickland’s theorem can similarly be used
to produce a commuative h-ring spectrum BP⟨n⟩ with BP⟨n⟩∗ ∼= Z(p)[v1, . . . , vn]. For example,
BP⟨1⟩ is the connective Adams summand ℓ.

Example 8.15 (Johnson-Wilson spectra). If we invert vn on the truncated Brown-Peterson spectra,
we get the Johnson-Wilson spectra E(n) with E(n)∗ = Z(p)[v1, . . . , vn, v−1

n ]. For example, we have
already seen E(1), the Adams summand L.

Example 8.16 (Connective Morava K-theory). If we mod out by all of the vi’s save one, we get the
connective Morava K-theory spectrum k(n) with k(n)∗ = Fp[vn]. For example, k(1) is the mod p
connective Adams summand.

Example 8.17 (Morava K-theory). If we invert vn on k(n), we get the Morava K-theory spectrum
K(n) with K(n)∗ = Fp[v±1

n ]. For example, K(1) is the mod p Adams summand.

These spectra all admit a ring map from MU and are related by ring maps

MU

BP BP⟨n⟩ k(n)

E(n) K(n)

Z[x1, x2, x3, . . . ]

Z(p)[v1, v2, . . . ] Z(p)[v1, . . . , vn] Fp[vn]

Z(p)[v1, . . . , vn, v−1
n ] Fp[v±1

n ].

The story is a little more complicated at p = 2. Strickland shows that there is a slightly different
quotient ring BP⟨n⟩′∗ of BP∗ that is isomorphic to Z(p)[v1, . . . , vn] and that can be realized as the
homotopy of a commutative h-ring spectrum, and the same goes for the localization E(n)′. How-
ever, the Morava K-theory spectra k(n) and K(n) are not commutative at the prime 2. On the other
hand, they can be realized as E1 = A∞ ring spectra.

One of the important properties of Morava K-theory is that it is a graded field, in the sense that
every module over K(n)∗ is automatically free. Thus working with K(n)-homology is essentially
doing linear algebra. One consequence of K(n) being a graded field is the following.

Proposition 8.18 (Kunneth theorem). Morava K-theory satisfies a Kunneth theorem, in the sense that
there is a natural isomorphism

K(n)∗(X)⊗K(n)∗ K(n)∗(Y) ∼= K(n)∗(X ∧ Y).

Recall that in the course of the proof of Proposition 5.3, we showed that Bousfield localization
at E(1) is the same as Bousfield localization at K(1) ∨ HQ. Since K(0) is HQ, this can be rewritten
as the equality

⟨E(1)⟩ = ⟨K(1) ∨ K(0)⟩.
Ravenel showed that this generalizes to the higher Johnson-Wilson spectra E(n).
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Theorem 8.19 ([Ra, Theorem 2.1]). We have equality of Bousfield classes

⟨E(n)⟩ = ⟨K(0) ∨ . . . K(n)⟩.
First we need a few preliminaries.

Definition 8.20. Let E∗ be an MU∗-module. We say that E∗ is Landweber exact if the sequence
(p, v1, v2, . . . ) is a regular sequence in E∗ for each prime p. If E is a spectrum equipped with an
MU-module structure (in the homotopy category), then we say that E is Landweber exact if E∗ is
so in the sense above.

Theorem 8.21 (Landweber Exact Functor Theorem). If E∗ is Landweber exact, then the functor X 7→
MU∗(X)⊗MU∗ E∗ is a homology theory. If E is a Landweber exact spectrum, then we have an isomorphsm
of homology theories E∗(X) ∼= MU∗(X)⊗MU∗ E∗.

Fri, Mar. 22

For us, one reason to pay attention to Landweber exact theories is that their Bousfield classes
are determined by their “height”, which we now define.

Definition 8.22. Let E be a p-local Landweber exact theory. Then we say that E has height n if
E∗/(p, v1, v2, . . . , vn−1) is nonzero, but E∗/(p, v1, v2, . . . , vn) vanishes.

Example 8.23. The spectrum K(0) = HQ is Landweber exact of height 0.

Example 8.24. The spectrum KU(p) is Landweber exact of height 1, and so is the Adams summand
E(1). On the other hand, K(1) = E(1)/p is not Landweber exact, since multiplication by v0 = p
is not injective.

Example 8.25. The Johnson-Wilson spectrum E(n) is Landweber exact of height n. On the other
hand, the Morava K-theory spectra k(n) and K(n) are not Landweber exact.

We will use the following in the proof of Theorem 8.19.

Theorem 8.26 ([HoSt]). If D is p-local and Landweber exact of height n, then ⟨D⟩ = ⟨E(n)⟩.
Example 8.27. Let E be Landweber exact and nontrivial. Then E[p−1] is Landweber exact of height
0, so ⟨E[p−1]⟩ = ⟨HQ⟩. This confirms what we said in Lemma 5.1, which did not rely on the
Landweber exact hypothesis.

Example 8.28. The spectrum E(2) is Landweber exact, and so is its localization E(2)[v−1
1 ]. This

is because multiplication by p = v0 and v1 are both injective, while the quotient by v1 vanishes.
Thus E(2)[v−1

1 ] is height 1. By Theorem 8.26, it follows that ⟨E(2)[v−1
1 ]⟩ = ⟨E(1)⟩.

Sketch of Theorem 8.19. First, we show that

⟨E(n)⟩ ≥ ⟨K(0) ∨ · · · ∨ K(n)⟩.
It suffices to show that ⟨E(n)⟩ ≥ ⟨K(ℓ)⟩ for each ℓ ≤ n. Since v−1

ℓ E(n) is a homotopy colimit of
suspensions of E(n), it follows that ⟨E(n)⟩ ≥ ⟨v−1

ℓ E(n)⟩, but the latter is the same as ⟨E(ℓ)⟩ by
Theorem 8.26. Since K(ℓ) can be formed from E(ℓ) by iterated cofibers (quotients), it follows that
⟨E(ℓ)⟩ ≥ ⟨K(ℓ)⟩.

In the other direction, we wish to show that

⟨K(0) ∨ · · · ∨ K(n)⟩ ≥ ⟨E(n)⟩.
By induction on n, we will suppose that we already know that ⟨E(ℓ)⟩ is equal to ⟨K(0)∨ · · · ∨K(ℓ)⟩
for ℓ strictly less than n. For simplicity, we specialize to the case n = 2, though essentially the same
argument works in general.
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Thus suppose that X is K(0)-acyclic and K(1)-acyclic and K(2)-acyclic. By the induction hy-
pothesis, we conclude that X is E(1)-acyclic. We wish to conclude that X is E(2)-acyclic.

First, we will show that X is E(2)/v0-acyclic. Since we have assumed that X is K(2)-acyclic and
since K(2) is the quotient E(2)/(v0, v1), it follows that multiplication by v1 is an equivalence on
the E(2)/v0-homology of X. It follows that we get an isomorphism

(E(2)/v0)∗(X) ∼= (v−1
1 E(2)/v0)∗(X).

On the other hand, as we indicated above, the induction hypothesis tells us that X is E(1)-acyclic.
By Theorem 8.26, this means that X is v−1

1 E(2)-acyclic, and it follows that X is v−1
1 E(2)/v0-acyclic.

We then conclude, using the displayed isomorphism, that X is E(2)/v0-acyclic.
But this means that the E(2)-homology of X is v0-periodic. Thus the E(2)-homology of X is the

v−1
0 E(2)-homology of X. But v−1

0 E(2) is rational, and we have assumed that X is K(0) = HQ-
acyclic. We conclude that X is E(2)-acyclic, as desired. ■
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Wed, Mar. 27

9. THE CHROMATIC FILTRATION

As we argued in the proof of Theorem 8.19, we have the
containment of Bousfield classes ⟨E(n)⟩ ≥ ⟨E(n − 1)⟩. Re-
call from Problem 2 of Worksheet 6 that this means that we
have a natural transformation Ln → Ln−1 of localization
functors (recall that we write Ln as shorthand for LE(n)).
We can assemble these transformations together to form the
chromatic tower for a p-local spectrum. This is displayed
to the right.

There are several questions we might ask of this chro-
matic tower. First, recall that we saw in Proposition 5.3 that
L1X can be recovered using the chromatic fracture square,
starting from rational information as well as the localiza-
tion at K(1). Our first result here will generalize this to
higher heights.

The chromatic tower

(9.1)

LnX

Ln−1X

...

X L0X.

Proposition 9.1 (Chromatic Fracture). For any X, there is a homotopy pullback square

LE(n)X LE(n−1)X

LK(n)X LE(n−1)LK(n)X

or, more concisely,

LnX Ln−1X

L̂nX Ln−1(L̂nX).

The proof of this will be essentially the same as that for Proposition 5.3, but it will use one
crucial ingredient. In comparing Proposition 5.3 and Proposition 9.1, one difference is that in the
case n = 1, the localization L0 is a smashing localization. It turns out that this is true in higher
heights as well.

Theorem 9.2 (Hopkins-Ravenel,[Ra2, Theorem 7.5.6]). The localization Ln is a smashing localization.
In other words,

X ∼= S ∧ X
η∧id−−→ LnS ∧ X

is an E(n)-localization of X.

This is known as the Smash Product Theorem, and it was one of the original conjectures in
[Ra].

Proof of Proposition 9.1. Just as in Proposition 5.3, we employ Proposition 4.13, with D = K(n)
and E = E(n − 1). We are entitled to use Proposition 4.13 because if X is K(n)-acyclic, then
Ln−1X ∼= Ln−1S ∧ X is still K(n)-acyclic. We have here relied on Theorem 9.2.

The other part of the proof of Proposition 5.3 was the verification that E(1)-localization agreed
with localization at K(1) ∨ HQ. In the general case, we know that E(n)-localization is localization
at K(n) ∨ E(n − 1) according to Theorem 8.19. ■
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Because of the Smash Product Theorem Theorem 9.2, we may rewrite the chromatic fracture
square as

LnS ∧ X Ln−1S ∧ X

L̂nX = S ∧ L̂nX Ln−1S ∧ L̂nX

pn∧id

id∧η

η∧id

Thus the Smash Product Theorem places primacy on the chromatic tower for S in understand-
ing any chromatic tower. Furthermore, the localizations L̂nX may be viewed as the key gluing
information that measures the difference between LnX and Ln−1X. Thus

understanding the K(n)-local sphere L̂nS = LK(n)S is one of
the central questions of chromatic homotopy theory.

Recall that in the case n = 1, we identified LK(1)S with the fiber of E(1)∧p
ψp+1−id−−−−→ E(1)∧p in

Proposition 5.6, at least for p odd. An alternative perspective is that this describes LK(1)S as the
homotopy fixed points of an action of a certain profinite group on E(1)∧p . A related, but perhaps
simpler, statement is that there is an action of the group Z×

p of p-adic units on KU∧
p , and Proposi-

tion 5.6 amounts to an equivalence

LK(1)S ≃ (KU∧
p )

hZ×
p .

This generalizes as follows.

Theorem 9.3 (Goerss-Hopkins-Miller, Devinatz-Hopkins). There are E∞-ring spectra En, known as
Morava E-theory or completed Johnson-Wilson spectra or Lubin-Tate spectra, together with an
action of a profinite group Gn, known as the Morava stabilizer group on En. The homotopy fixed points
model the K(n)-local sphere; in other words,

LK(n)S ≃ EhGn
n .

In theory, one could run a homotopy fixed point spectral sequence to then compute LK(n), but
this is not practical in general. In recent years, progress has been made using the finite subgroups
H of Gn. The homotopy fixed points EhH

n then give an approximation to LK(n)S.

Fri, Mar. 29

Going back to the chromatic tower (9.1), another reasonable question is: what is the inverse
limit? The Chromatic Convergence Theorem answers this:

Theorem 9.4 ([Ra2], Theorem 7.5.7). Let X be a finite p-local spectrum. Then the natural map

X −→ holim
n

LnX

is an equivalence.

Like Proposition 9.1, the proof of Theorem 9.4 given in [Ra2] depends on the Smash Product
Theorem, Theorem 9.2.
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Mon, Apr. 1

The Chromatic Convergence Theorem tells us that the spectra LnS give a better approximation
to S(p) as n increases. Thus, as n increases, the difference in homotopy between S(p) and LnS

decreases. This leads to the chromatic filtration on π∗S.

Definition 9.5. The chromatic filtration on π∗S(p) is the descending filtration given by

Fn = ker
(

π∗S(p) −→ π∗Ln−1S
)

.

Since the map S(p) −→ Ln−1S factors through LnS, it follows that Fn+1 is contained in Fn.

Example 9.6. Since L0S is HQ, the first stage F1 consists precisely of the torsion in S(p), which is
all elements in positive degrees.

Example 9.7. We considered the maps S(3) → L1S and S(2) → L1S in Section 7. The elements of
π∗S(2) or π∗S(3) that went to nonzero elements of π∗L1S were all near the “vanishing line”, in high
Adams filtration. Thus elements of F2 are detected in lower Adams filtration.

The general picture is that each Fn will be detected in bands that are further and further away
from the vanishing line. Note that F0 is all of π∗S. At the other end, we might wonder about
F∞ = ∩nFn. Any element here would be an element of π∗S that is not detected in any LnS. It is
a consequence of Theorem 9.4 (Chromatic Convergence) that there are no such nonzero elements.
To see why, we need to consider π∗ holimn LnS.

In general, if → En → En−1 → . . . is an inverse system of spectra, it is not the case that the
homotopy of the homotopy limit agrees with the inverse limit of the homotopy groups. This
corresponds to the failure of inverse limits to be exact.

Let → An
fn−→ An−1

fn−1−−→ . . . be an inverse system of abelian groups. Then we can represent the
inverse limit of the An’s as

lim
n

An = ker

(
∏

n
An

D−→ ∏
n

An

)
where the difference map D is D(a∗)n = an − fn+1(an+1). Unfortunately, the map D is not in
general surjective. We define

lim
n

1An = coker

(
∏

n
An

D−→ ∏
n

An

)
.

In other words, we have an exact sequence

0 → lim An → ∏
n

An
D−→ ∏

n
An → lim

n
1An → 0.

You will be asked to show the following on this week’s worksheet:

Proposition 9.8. Let . . .
fn+1−−→ En

fn−→ En−1
fn−1−−→ . . . be an inverse system of spectra. Then we have an

exact sequence
0 → lim1πk+1En −→ πk (holim En) → lim πkEn → 0.

However, there are conditions under which lim1 is guaranteed to vanish.

Proposition 9.9. Suppose that → An
fn−→ An−1

fn−1−−→ . . . is an inverse system such that EITHER
(1) each An is finite OR
(2) each fn is surjective.
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Then limn
1 An vanishes.

Theorem 9.10. For each k ≥ 0, we have

πkS(p)
∼= lim

n
πkLnS.

Proof. Combining Chromatic Convergence (Theorem 9.4) with Proposition 9.8 gives a short exact
sequence

0 → lim
n

1πk+1LnS → πkS(p) → lim
n

πkLnS → 0.

It remains to show that limn
1πk+1Ln vanishes. By Proposition 9.9, it suffices to show that πk+1Ln

is finite, for k ≥ 0. In other words, it suffices to show that the rationalization of LnS has no
homotopy in positive degrees. But ⟨E(n)⟩ ≥ ⟨E(0)⟩ = ⟨HQ⟩, as we have seen previously. It
follows that (LnS)Q ≃ SQ ≃ HQ. In particular, the homotopy groups of LnS in positive degrees
are all finite. ■

Remark 9.11. We used in the proof above that LnS is rationally equivalent to S. One might also
ask about the rationalization of L̂nS. This is described by a major recent result of Barthel-Schlank-
Stapleton-Weinstein [BSSW]:

π∗(L̂nS)Q
∼= EQ(ζ1, . . . , ζn),

with ζ j in degree 1 − 2j. Note that this agrees with what we found in the case n = 1 in Proposi-
tion 5.12 and Proposition 5.8.

Wed, Apr. 3

10. NILPOTENCE, PERIODICITY, AND THICK SUBCATEGORIES

We have already encountered some of Ravenel’s conjectures, including the (height one) Tele-
scope conjecture Theorem 5.18 and the Smash Product Theorem (Theorem 9.2). As we indicated
previously, the Smash Product Theorem is a key input for the proof of the Chromatic Convergence
Theorem (Theorem 9.4).

Next, we discuss the Nilpotence Theorem, proved by Devinatz, Hopkins, and Smith. This was
among the original Ravenel conjectures [Ra], and it is the backbone behind many of the other
results. The historical precursor of the Nilpotence Theorem is the nilpotence theorem of Nishida:

Theorem 10.1. [N] In the graded ring π∗S, every element in positive degrees is nilpotent.

We can think about this statement as talking about multiplying elements in the graded ring π∗S,
or equivalently as iterating self-maps of the sphere.

Theorem 10.2 (Nilpotence, [DHS]).
(1) (Ring spectrum form) Let R be a h-ring spectrum Then the kernel of the MU-Hurewicz map

π∗R → MU∗(R)

consists of nilpotent elements.
(2) (Finite spectrum form) Let f : ΣdX → X be a self-map of a finite spectrum X. Then f is nilpotent

if and only if the induced map

MU∗(ΣdX)
f∗−→ MU∗(X)

is nilpotent (under iteration).
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Proof that ring form implies finite form. Let f : ΣdX → X be a self-map of a finite spectrum X and
suppose that MU∗( f ) is nilpotent. We wish to see that f is nilpotent. Take any power k such that
MU∗( f k) is zero.

Now consider the h-ring spectrum R = F(X, X), namely the endomorphism object of X. Since
X is a finite spectrum, and therefore a dualizable object, we have an equivalence of spectra R ≃
DX ∧ X. Now the self-map f of X corresponds, by adjointness, to a map f̂ : Sd → R. Since
multiplication in R corresponds to composition of endomorphisms, it follows that ( f̂ )k is (̂ f k).
Now the factorization of (̂ f k) on the left implies a similar factorization of MU ∧ (̂ f k) on the right.

Sdk ΣdkR ≃ F(X, ΣdkX)

R

η

f̂ k
F(id, f k)

MU ∧ Sdk MU ∧ ΣdkR MU ∧ DX ∧ ΣdkX

MU ∧ R MU ∧ DX ∧ X

id∧η

id∧ f̂ k
id∧F(id, f k)

≃

id∧id∧ f k

≃

By assumption, the right vertical map is zero, so we conclude that f̂ k is in the kernel of the
Hurewicz map πdkR → MUdkR. By the ring form of the Nilpotence theorem, it follows that
f̂ k is nilpotent in π∗R, which in turn implies that f k is nilpotent as an endomorphism of X. ■

Corollary 10.3. Nishida’s nilpotence theorem for π∗S follows, since all elements in positive stems are
torsion and are therefore necessarily in the kernel of the map π∗S → MU∗.

This is a significant theoretical advance, saying that the functor MU∗(−) from finite spectra to
MU∗-modules is close to being faithful. Practically speaking, we prefer to work p-locally, so we
may as well replace MU with BP. And in the p-local context, the easiest homology theories to
work with are the Morava K-theories. There is a form of the Nilpotence theorem, in the p-local
context, in terms of the K(n)’s. We will write K(∞) = HFp.

Theorem 10.4 (p-local Nilpotence, [HS]).
(1) (Ring spectrum form) Let R be a p-local h-ring spectrum. Then α ∈ π∗R is nilpotent if and

only hK(n)α is nilpotent in K(n)∗R for each 0 ≤ n ≤ ∞, where hK(n) : π∗R → K(n)∗R is the
K(n)-Hurewicz homomorphism.

(2) (Finite spectrum form) Let f : ΣdX → X be a self-map of a p-local finite spectrum X. Then f is
nilpotent if and only if the induced map

K(n)∗(ΣdX)
f∗−→ K(n)∗(X)

is nilpotent (under iteration) for each 0 ≤ n ≤ ∞.

We now largely turn our attention to p-local finite spectra. We start by introducing the chromatic
“type” of such an object.

Definition 10.5. Let X be a p-local finite spectrum. We say that X has (chromatic) type ≥ n if
E(n − 1)∗X = 0. As expected, X has type exactly n if it has type ≥ n but not ≥ n + 1. By
convention, every X has type ≥ 0.

In other words, X has type ≥ n if it is E(n − 1)-acyclic, or if Ln−1X ≃ ∗.

Example 10.6. The p-local sphere S(p) has type 0, since L0S(p) ≃ HQ is nontrivial.

Example 10.7. The Moore spectrum S/p has type 1, since it is rationally acyclic, but we saw earlier
that L1S/p is nontrivial.
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Mon, Apr. 8 – Eclipse Day!

Notation 10.8. Let us denote by HoSpfin
(p) the homotopy category of p-local finite spectra, and by

HoSpfin
≥n ⊂ HoSpfin

(p) the full subcategory of finite p-local spectra of type ≥ n.

It will be useful to have another characterization of being type ≥ n.

Proposition 10.9 ([Ra, Theorem 2.11]). Let X be a finite complex. If X is K(n)-acyclic, then it is also
K(n − 1)-acyclic.

It follows that if a finite X is K(n)-acyclic, then it is K(j)-acyclic for all j ≤ n. By Theorem 8.19,
it follows that for finite X, if X is K(n)-acyclic, then it is also E(n)-acyclic. Thus X is type ≥
n + 1 if and only if K(n)∗(X) vanishes, which is a more practical characterization than the one in
Definition 10.5.

Proof. Consider the ring spectrum R constructed, using Theorem 8.12, as the quotient R =
E(n)/(p, v1, . . . , vn−2). Then R∗ ∼= Fp[vn−1, v±1

n ]. This is a graded PID, so that finitely gener-
ated modules over it are necessarily sums of cyclic modules. This applies to R∗(X), since X is
finite. Thus suppose that R∗(X) is a sum of cyclic R∗-modules, each of which is either free or of
the form R/vk

n−1 for some k.

The cofiber sequence ΣdR
vn−1−−→ R → K(n) gives a long exact sequence relating K(n)∗X to R∗X.

If we assume that X is K(n)-acyclic, it follows that vn−1-multiplication is an isomorphism on R∗X.
But this implies that R∗(X) also vanishes.

It then follows that the localization v−1
n−1R∗(X) vanishes. But this turns out to have the same

rank as K(n − 1)∗(X). The idea is to compare both to T∗(X), where T∗ = Fp[v±1
n−1, vn], and to see

that both comparisons give the same rank. The point is to show that for a finite X, T∗X cannot
have nontrivial vn-torsion. See [JW, Theorem 3.1] for more details. ■

The category HoSpfin
≥n is an example of what is known as a “thick” subcategory.

Definition 10.10. A full subcategory C ⊂ HoSpfin
(p) is said to be thick if

(1) Whenever X → Y → Z is a cofiber sequence and two of X, Y, and Z are in C, then so is the
third, and

(2) When X is a retract of Y and Y is in C, then so is X.

In other words, thick subcategories are closed under cofiber sequences and retracts. A remark-
able theorem of Hopkins and Smith says that the subcategories HoSpfin

≥n are the only thick subcat-
egories of HoSpfin

(p).

Theorem 10.11 ([HS], The Thick Subcategory Theorem). Let C ⊂ HoSpfin
(p) be a nonzero thick subcat-

egory. Then C is the subcategory HoSpfin
≥n for some n ≥ 0.

Wed, Apr. 10

We will deduce the Thick Subcategory Theorem from a different variant of the Nilpotence, the
“Smash Product” form. Rather, we will use the following corollary of the Smash Product form of
nilpotence.

Proposition 10.12. [Ra, Corollary 5.1.5] Let W, X, and Y be p-local finite spectra, and suppose given
f : X → Y. Then id ∧ f ∧k : W ∧ X∧k → W ∧Y∧k is null, for large enough k, if id ∧ f : W ∧ X → W ∧Y
induces the zero map on K(n)∗ for all 0 ≤ n ≤ ∞.
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Proof of Theorem 10.11. Let C ⊂ HoSpfin
(p) be a nonzero thick subcategory, and let n be smallest such

that C contains a (non-contractible) finite complex of type (exactly) n. In other words, every finite
complex in C has type at least n, so that

C ⊂ HoSpfin
≥n,

and it remains to show the other containment.
Thus let Y be a p-local finite complex of type at least n. By assumption, C contains some finite

complex X of height exactly n. The idea is then to express Y as a retract of something built from
X.

One point is that for any finite F, we can build X ∧ F from X using finitely many cofiber
sequences, and so it follows that X ∧ F lies in C, since C is thick. Define J to be the fiber

J
f−→ S → X ∧ DX of the unit map for the h-ring spectrum X ∧ DX. This expresses X ∧ DX as

the cofiber of f : J → S. Similarly, we have a cofiber sequence

(10.1) J ∧ Y
f∧id−−→ S ∧ Y → X ∧ DX ∧ Y.

Note that X ∧ DX ∧ Y lies in C since DX ∧ Y is finite. We will soon also consider the cofiber
sequence

J∧k ∧ Y
f ∧k∧id−−−→ S ∧ Y → C f ∧k∧id

for large k. An induction argument shows that the cofiber C f ∧k∧id is again in C.
Let us consider the effect of K(j)∗ on (10.1). There are two cases. First, suppose that K(j)∗(Y) =

0. This happens, for example, if j is strictly less than n, but it could also happen in higher heights
if the height of Y is above n. Then K(j)∗ vanishes on the whole sequence, by the Kunneth formula.
Second, if K∗(Y) is nonzero, so that j is at least n, then we know that K(j)∗(X) is nonzero by Propo-
sition 10.9, and the same is true of K(j)∗(DX), the K(j)∗-linear dual of K(j)∗X. Furthermore, the
map on K(j)∗ induced by the unit map S → X ∧ DX is nonzero, and therefore a monomorphism.

The same is true after tensoring with K(j)∗(Y). We conclude that K(j)∗(J ∧Y)
( f∧id)∗−−−−→ K(j)∗(S∧Y)

is the zero map.

By Proposition 10.12, it follows that for some large enough k, then J∧k ∧ Y
f ∧k∧id−−−→ S ∧ Y ∼= Y is

null. Thus its cofiber splits as C f ∧k∧id ≃ Y ∨ Σ1(J∧k ∧ Y). Since Y is a retract of C f ∧k∧id, it follows
that Y is in C. ■

Remark 10.13. The study of thick subcategories has grown tremendously in recent years. This
started with [HS] and related work of Hopkins. The subject got a rebranding and renewed interest
through the work of Paul Balmer [Ba]. Now the set of thick subcategories (or thick tensor ideals)
is known as the “Balmer spectrum”. For example, this has been studied recently in equivariant
stable homotopy theory [BS, BHN+].
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The Thick Subcategory Theorem has many applications. For example, it is used in the proof of
Theorem 9.2, the Smash Product Theorem. Here is the idea.

Definition 10.14. A thick tensor ideal in HoSp(p) is a thick subcategory that is also an ideal,
meaning that it is closed under smashing with any X in HoSp(p).

For any E, let TE ⊂ HoSp(p) be the smallest thick tensor ideal containing E.

Proposition 10.15. Let E be a ring spectrum, and suppose that there exists a finite spectrum W such
that (1) W has nontrivial rationalization and (2) the localization LEW is in TE. Then LE is a smashing
localization.

Proof. Bousfield showed that for E a ring spectrum, then TE is contained in the E-local objects. If
LES were in TE, then, since TE is an ideal, LES ∧ X would also be in TE and therefore E-local. Thus
LES ∧ X would be an E-localization of X, meaning that E is smashing.

So it remains to show that LES lies in the thick tensor ideal TE ⊂ HoSp(p). Let C ⊂ HoSpfin
(p)

be the full subcategory consisting of finite spectra F for which LEF lies in TE. Since LE preserves
retracts and cofiber sequences, it follows that C is a thick subcategory. By assumption, C contains
a type zero spectrum. Therefore, by the Thick Subcategory Theorem, it follows that C is the thick
subcategory HoSpfin

≥0 = HoSpfin
(p). In particular, C contains S. ■

The Smash Product Theorem Theorem 9.2 then follows by producing such a Y in the case of
E = E(n). This is discussed in [Ra2, Section 8.3].

Another application of the Thick Subcategory Theorem is the Periodicity Theorem. Recall that
we previously discussed v1-self-maps in Proposition 5.15.

Definition 10.16. Let X be a p-local finite spectrum. A map f : ΣnX → X is called a vn-self-map if
K(n)∗( f ) is an isomorphism and if K(j)∗( f ) is zero when j ̸= n.

Example 10.17. For any p-local finite spectrum X, the degree p map X
p−→ X is a v0-self-map. To

see this, first note that multiplication by p is always an isomorphism on K(0)-homology, which
is rational homology. Also, K(j) is p-torsion for all j > 0, so the degree p map is zero on K(j)-
homology for j > n.

Example 10.18. We saw previously that S/p admits a v1-self-map. More precisely, we found a
self-map that induces multiplication by v1 in K(1)-homology. For degree reasons, we can see that
it cannot be an isomorphism on K(j)-homology for j > 1. For instance, consider p = 3 and j = 2.
Note that v2 has degree 16. Then K(2)∗S/3 has homotopy concentrated in degrees congruent to 0
and 1 modulo 16. But v1 has degree 4, so it cannot induce an isomorphism in K(2)-homology.

Notation 10.19. We write Vn ⊂ HoSpfin
(p) for the full subcategory of finite spectra admitting a

vn-self-map.

Wed, Apr. 17

First note that if X has type ≥ n + 1, then the zero map on X is a vn-self-map. This shows that

HoSpfin
≥n+1 ⊂ Vn.

On the other hand, suppose that X admits a vn-self-map f : ΣdX → X. Then the long exact se-
quence in K(n)-homology shows that C f , the cofiber of f , is K(n)-acyclic. It follows from Proposi-
tion 10.9 that C f is also K(n − 1)-acyclic. But since f induces the zero map on K(n − 1)-homology,
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it follows that X must also be K(n − 1)-acyclic. In other words, X has type ≥ n. Thus

Vn ⊂ HoSpfin
≥n.

We will want to apply Theorem 10.11 to deduce that Vn must indeed be one of these two cate-
gories. First, we establish that Vn is a thick subcategory.

Proposition 10.20. The category Vn is a thick subcategory.

For this we will need the following lemmas, whose proofs can be found in [Ra2, Section 6.1].

Lemma 10.21. Let f be a vn-self-map of X. Then, for k large enough, the iterate f k is in the center of the
endomorphism ring of X.

Lemma 10.22. Let X and Y have self-maps f and g. Then there exist integers k and j such that for any
h : X → Y, the diagram

Σkd f X ΣjdgY

X Y

Σh

f k gj

h

commutes.

Proof of Proposition 10.20. We start by showing that Vn is closed under retracts. Thus assume that
X is a retract of Y and that Y admits a vn-self-map g : ΣdY → Y. By Lemma 10.21, after replacing
g with some iterate of g we may assume that g commutes with the idempotent i ◦ r : Y → X → Y.

We claim that ΣdX Σdi−→ ΣdY
g−→ Y r−→ X is a vn-self-map. It certainly induces the zero map on

K(j)-homology, for j ̸= n, since g does. By assumption, K(n)∗g is an isomorphism. Let φ be an
inverse. We then claim that

K(n)∗+dX i∗−→ K(n)∗+dY
φ−→ K(n)∗Y r∗−→ K(n)∗X

is an inverse. The point is that since g commutes with i ◦ r, the diagram

K(n)∗Y K(n)∗+dY K(n)∗+dY K(n)∗Y

K(n)∗X K(n)∗+dX K(n)∗+dX K(n)∗X

K(n)∗Y K(n)∗+dY K(n)∗Y

g∗

r∗

φ

r∗i∗

i∗r∗i∗=i∗

i∗

g∗ φ

r∗

commutes. The composition along the bottom is the identity, so the same is true of the composite
along the top.

Next, by rotating cofiber sequences as needed, it is enough to see that Vn is closed under
cofibers. Thus let h : X → Y, where X and Y have self-maps f and g, respectively. By Lemma 10.22,
after replacing f and g with appropriate iterates, we may assume that gh is equal to h f . Using this
setup, you will show on a worksheet that the cofiber of h admits a vn-self-map. ■

By the Thick Subcategory Theorem, it follows that Vn is either HoSpfin
≥n or HoSpfin

≥n+1. To see
that it is indeed HoSpfin

≥n, it suffices to find a single example of a type n complex with a vn-self-
map.

In [Ra2, Chapter 6], Ravenel reduces this to producing a finite spectrum Y satisfying certain
conditions on its cohomology. The point is that there are Adams spectral sequences of the form

E∗,∗
2 = Ext∗,∗

A (H∗(DY ∧ Y), Fp) ⇒ π∗(DY ∧ Y)
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and
E∗,∗

2 = Ext∗,∗
E(Qn)

(H∗(DY ∧ Y), Fp) ⇒ k(n)∗(DY ∧ Y),

together with a comparison map from the former to the latter. The cohomological conditions on Y
are meant to ensure the existence of a permanent cycle in the first spectral sequence that maps to
a power of vn in the second spectral sequence.

Fri, Apr. 19

Ravenel then uses an argument of Jeff Smith to produce such an
appropriate finite complex. In order to illustrate the method, let’s
look at height 1 and p = 3, even though we already know about a
v1-self-map. Let us write Bk = skkBCp. This has one cell in each
dimension from 0 to k. Similarly, write Bk

i = cofib Bi−1 → Bk. This
has one cell from dimension i to k. We have a good understanding of
the action of the Steenrod algebra on H∗(Bk

i ). Recall from Section 6
the elements Q0, P1, and Q1 in A3 of degrees 1, 4, and 5, respectively.

H∗(B6
2)

P1
Q0

Q0

Then Ravenel-Smith show that there is an idempotent e ∈ Z(3)[Σ20] such that, for ℓ large
enough, then the cohomology of W = e−1(B6

2)
∧20ℓ will satisfy the needed criteria. In this case,

that means that (1) Q0 and P1 both act freely, (2) Q1 acts trivially, and (3) H∗(W) is of the same
rank as K(1)∗(W).

These are the ideas behind the following result.

Theorem 10.23 (Periodicity, [HS]). Let X be a finite p-local complex. If X is type n, then X admits a
vn-self-map.
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Remark 10.24. The periodicity theorem is an important theoretical statement. It asserts the exis-
tence of a vn-self-map, but unfortunately, given a specific type n complex X, the theorem does not
tell you how to find a vn-self-map. In terms of understanding periodicity in the stable homotopy
groups of spheres, what is most useful is finding examples where the type n complex is small, and
where the vn-self-map is defined on a relatively small suspension. For example, we might want
the self map to induce multiplication by vk

n on K(n)-homology, for a small value of k.
We have seen some examples earlier in the course. For p odd, S/p admits a v1-self-map in-

ducing multiplication by v1
1 on K(1). We say that this self-map has periodicity 1. Then the long

exact sequence shows that the cofiber S/(p, v1) of this v1-self-map is now a type 2 spectrum. One
might then wonder what is the smallest possible periodicity for a v2-self-map on this cofiber? It
turns out that for p ≥ 5, there is a v2-self-map of periodicity 1, while at p = 3, there is known to
be a v9

2-self-map. In general, spectra of the form S/(p, v1, vk2
2 , vk3

3 , . . . ) are known as Smith-Toda
complexes, and they do not always exist. For example, Toda showed that S/(p, v1, v2, v3) exists if
p is at least 7. On the other hand, Nave showed that S/(p, v1, v2, v3) does not exist at p = 5. In
other words, S/(p, v1, v2) does not admit a v3-self-map of periodicity 1. See [Ro, Example 13.2.5]
for an extended discussion along these lines.

One of the main applications of self-maps of low periodicity is in describing periodic families
of elements in the stable homotopy groups of spheres.

Example 10.25. Recall the Adams v1-self-map v4
1 : S8/2 → S. We claim that each composition

S8k ↪→ S8k/2
v4

1−→ . . .
v4

1−→ S8/2
v4

1−→ S/2
p−→ S1

is nontrivial. Certainly if we ignore the inclusion S8k ↪→ S8k/2 and the projetion S/2 → S1, then
the iterates of v4

1 cannot be null, since they induce isomorphisms on KU-homology according to
Proposition 5.15. The commuting diagram

Σ8kKU Σ8kKU/2 KU/2

S8k S8k/2 S/2

v4k
1

η

(v4
1)

k

η η

shows that the composition along the bottom cannot be null. Finally, the composition with the
projection p : S/2 → S1 will be null if and only if S8k → S/2 factors through S. But that can’t
happen because π8kS is torsion, while π8kKU is torsion-free.

Thus, for each k ≥ 0, this composition defines a nontrivial element in π8k−1S. In the figures on
page 29, these are the elements in highest Adams filtration.

Example 10.26. Very recent work [BBQ] of Bhattacharya, Bobkova, and Quigley produces v2-
periodic elements in the 2-primary stable homotopy groups of spheres. The periodicity of these
elements is 192. This is related to the previously-known existence of a v32

2 -self-map on a certain
finite complex A1. The first element that is included in their theorem is an element of order 2 in
π23S. It is the multiple of η detected in Adams filtration 9

Wed, Apr. 24
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11. THE TELESCOPE CONJECTURE

Finally, we return to the Telescope Conjecture. We previously discussed the height 1 case in
Section 5.

Given Theorem 10.23, the Periodicity Theorem, we know that any type n finite complex admits
a vn-self-map. As in Notation 5.16, let us write Tel(n) for W[v−1

n ], where W is any type n finite
complex. An argument as in Proposition 5.17 shows that any K(n)-local spectrum is Tel(n)-local.

Conjecture 11.1 (The Telescope Conjecture). Bousfield localization at Tel(n) is the same as Bousfield
localization at K(n).

This was disproved at heights at least 2 in [BHLS]. More specifically, they produced examples
of spectra that are Tel(n)-local but not K(n)-local.

There are other, equivalent, statements of the Telescope Conjecture. For instance, suppose that
W is a type n complex with vn-self-map f : ΣdW → W. Write v−1

n W for the telescope

hocolim
(

W
Σ−d f−−→ Σ−dW

Σ−2d f−−−→ Σ−2dW
Σ−3d f−−−→ · · ·

)
Then f is an E(n)-equivalence by Theorem 8.19. So it follows that the localization map W → LnW
factors through v−1

n W.

Conjecture 11.2 (The Telescope Conjecture, version 2). Let W be a type n complex with vn-self-map
f : ΣdW → W. Then the induced map v−1

n W → LnW is an equivalence.

The telescope v−1
n W has vn-periodic information, by construction, while the localization LnW is

viewed as the more computable object, for instance via the Fracture Square Proposition 9.1 and
the description in Theorem 9.3 of the K(n)-local sphere as a homotopy fixed point object.

Recall that in Definition 9.5 we introduced the chromatic filtration on π∗S(p) as

Fn = ker
(

π∗S(p) −→ π∗Ln−1S
)

.

There is another filtration that one can write down. Start with an element α ∈ π∗S. Either this
element is p-power torsion, or not. If so, then we get a factorization of α as

Sn Sn/pk S

α

β
.

Now S/pk as a v1-self-map, and either β is annihilated by some power of this self-map or not. If
so , we can further factor β as

Sn/pk Sn/(pk, vk1
1 ) S

β

γ
.

The resulting filtration is referred to as the “geometric filtration” [Ra2, Section 7.5]. As this filtra-
tion is just filtering by the kernels of the maps π∗(S) → π∗v−1

n W, we get

Conjecture 11.3 (The Telescope Conjecture, version 3). The chromatic filtration on π∗S (see Defini-
tion 9.5) agrees with the “geometric filtration” described above.

Again, Conjecture 11.2 and Conjecture 11.3 are equivalent to Conjecture 11.1, so the work of
[BHLS] disproves all of these at height ≥ 2.
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11.1. Very brief sketch of the height 1 Telescope Conjecture at p = 2. Work of Mark Mahowald
[Ma] proves the 2-primary height 1 Telescope Conjecture. We will discuss this in the context
of Conjecture 11.2. It suffices to see that L1S/2 is v−1

1 S/2. Mahowald uses the Adams spectral
sequence based on ko, the connective (real) K-theory spectrum. This Adams spectral sequence
converges to the homotopy of S/2, but it has the deficiency that ko is not a flat ring spectrum, so
that we do not have a nice description of the E2-term of the spectral sequence.

Inverting the v1-self-map on the target gives π∗v−1
1 S/2, whereas inverting v1 in the spectral

sequence converts the ko-based spectral sequence into a KO-based spectral sequence. As KO is
not connective, convergence is not guaranteed. One of the central parts of the computation is then
Mahowald’s “Bounded Torsion Theorem”, which asserts that all classes that survive the ko-based
Adams spectral sequence are either v2

1-torsion or are in low ko-filtration. This guarantees that
there cannot be an infinite sequence of v1-multiplications that are hidden in the ko-based Adams
spectral sequence.

11.2. Omissions. This course was really just an introduction to chromatic homotopy theory.
There are many aspects that we did not discuss (most notably, formal group laws). Here are a
few more.

We saw earlier in Proposition 10.9 that if X is a finite p-local spectrum and the K(n)-homology of
X vanishes, then so does the K(j)-homology for all j < n. Recent work [H] shows that the opposite
is true for nice enough ring spectra (for example, the dual of a finite CW complex). That is, if
K(n)∗R vanishes, then K(ℓ)∗R vanishes for ℓ > n. This was also shown to be a consequence of the
recent “Chromatic Nullstellensatz” of [BSY]. This states that Lubin-Tate spectra (over algebraically
closed fields) play the role of algebraically closed fields in the category of Tel(n)-local E∞-rings.

Another important result involves the Tate construction. Suppose that X is a Tel(n)-local spec-
trum. One can then equip X with a trivial action of the group Cp and form the Cp-Tate construction
XtCp . Then Kuhn showed [K] that LTel(n)XtCp vanishes. In particular, if R is an E∞ ring of chromatic
height n, then RtCp will have lower chromatic height. This is known as “Tate blueshift”.
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