
ALGEBRAIC K-THEORY

BERTRAND GUILLOU

1. The Q construction

1.1. Introduction
References: (1) Weibel, C. Intro to Algebraic K-theory, in-progress, but available online;
(2) Quillen, D. ”Higher algebraic K-theory: I” in Springer LNM v.341, 1973; (3) Grason,
D. “Higher algebraic K-theory: II” in Springer LNM v.551, 1976; (4) Srinivas, V. Algebraic
K-Theory, Second Edition, Birkhauser, 1996.

We have seen a definition of the higher K-groups of a ring as the homotopy groups of a
space:

Ki(R) = πi(BGl(R)+ ×K0(R)).
Quillen was able to calculate the K-theory of finite fields with this definition, and Borel
calculated the ranks of the rational K-groups of the ring of integers in a number field (=finite
extension of Q).

On the other hand, one would like to extend some of the fundamental structure theorems
from classical K-theory to the higher K-groups, and so we need a more general construction.

1.2. Exact Categories
Definition 1. An exact category is an additive category C with a family E of sequences

0→ B
i−→ C

j−→ D → 0

such that there is an embedding of C as a full subcategory of some abelian category A
satisfying

(1) A sequence of the above form in C is in E if and only if the sequence is a short exact
sequence in A.

(2) C is closed under extensions in A (i.e. if we have a short exact sequence 0→ B →
C → D → 0 in A with B,D ∈ C then C ∈ C , up to isomorphism).

Example 1. (a) Any abelian category is of course exact.
(b) Any additive category can be made into an exact category by taking the exact se-

quences to be the split exact sequences.
(c) For any ring R, the category P(R) of finitely generated left projective modules over

R is exact (the exact sequences are the split exact ones).
(d) For any (left) Noetherian ring R, the category M(R) of finitely generated left R-

modules is abelian and therefore exact.

If C is an exact category, we will call a monomorphism (epimorphism) appearing in
a short exact sequence an admissible monomorphism (epimorphism), and we will write
B � C (C � D). We will need the following
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Lemma 1. Admissible epi’s are closed under composition and base change; in addition,
they are closed under cobase change along an admissible mono. There is a corresponding
dual statement for admissible mono’s.

Definition 2. Given an exact category C , we define the Grothedieck group K0(C ) to be
F/R, where F is the free abelian group on isomorphism classes of C and R is the subgroup
generated by [C]− [B]− [D] for each short exact sequence

0→ B → C → D → 0

in C .

Of course, when C = P(R) for some ring R, this agrees with the old definition.

1.3. The Q construction
In order to define the higher K-groups of an exact category, we will first define an auxiliary
category QC .

Definition 3. Given an exact category C , we define a new category QC by taking the
objects of QC to be the objects of C . Given A,B ∈ QC a morphism from A to B in QC
will be an isomorphism class of diagrams

A
q
� C

i
� B

in C . Now given such a morphism A→ B and a morphism B → D

B
p
� E

j
� D

their composite is defined by

C ×B E // //

����

E // j //

p
����

D

A Cq
oooo // i // B

Note that we have used the lemma to know that the pullback of p and i are of the right
type.

Remark 1. We think of a morphism A → B as an identification of A with a subquotient
of B.

Remark 2. Any admissiblie mono i : A � B in C gives a morphism A → B in QC ,

namely A
id
� A

i
� B. Similarly, any q : B � A in C gives a wrong way morphism A→ B

in QC , namely A
q
� B

id
� B. As a result, any morphism A � C � B in QC can be

regarded as a composite of two morphisms in QC .

Theorem 1. For an exact category C , we have π1(BQC ) ∼= K0(C ).

Proof. We take 0 ∈ QC as our basepoint. We can consider any morphism A→ B in QC as
an element of π1(BQC ) by concatenating this path with 0 � A and the inverse of 0 � B.
Then π1(BQC ) is generated by morphisms in QC subject to the relation [g] · [f ] = [g ◦ f ].

Consider a morphism A→ B in QC , given by morphisms A � C � B in C . Then

[0 � B]−1[C � B][A � C][0 � A] = [0 � C]−1[A � C][0 � A].
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The composition 0 � A � C in QC is given by 0 � K � C, where K � C � A is exact.
Thus the above loop can alternatively be given by

[0 � C]−1[K � C][0 � K] = [0 � K]−1[0 � K].

It follows that π1(BQC ) is generated by loops of the form [0 � A]−1[0 � A]. We will
denote these by LA.

We claim that the relation [g] · [f ] = [g ◦ f ] for all f, g ∈ QC is equivalent to LALC = LB
for every A � B � C. Suppose we have [g] · [f ] = [g ◦ f ] for all f, g and let A � B � C.

Take f to be 0 � C
id
� C and g to be C � B. Then g ◦ f is given by 0 � C � B � B.

As we have seen,

[0 � C]−1[f ] = LC , [0 � B]−1[g][0 � C] = LA, [0 � B]−1[g ◦ f ] = LB,

so LB = LALC .
On the other hand, suppose given this latter relation for every exact sequence and let

f = A � C � B, g = B � E � D in QC . Then

g ◦ f = A � C � F � E � D,

where F = C ×B E. Let K1 = ker(E → B) ∼= ker(F → C), K2 = ker(F → A), and
K3 = ker(C → A). Note that K1 � K2 � K3 is exact. Now

LK1 = [0 � D]−1[g][0 � B], LK2 = [0 � D]−1[g◦f ][0 � A], LK3 = [0 � B]−1[f ][0 � A],

so we have [g] · [f ] = [g ◦ f ] as desired.
But now our presentation of π1(BQC ) agrees with that of K0(C ), so we are done. �

Given the above theorem, the following definition should not be unreasonable.

Definition 4. For an exact category C , we define the K-theory space by K(C ) := ΩBQC .
The K-groups are then given by

Ki(C ) := πi(K(C )) = πi+1(BQC ).

In the case of C = P(R) one usually writes K(R) for K(P(R)). Also, in the case
C = M(R) for a noetherian ring R, one usually writes G(R) for K(M(R)). Note that
the inclusion P(R) ⊆ M(R) gives a map K(R) → G(R). The induced map on homotopy
groups is usually referred to as the Cartan homomorphism.

1.4. Fundamental Theorems
Using the above definition of algebraic K-theory, Quillen was able to extend some of the
fundamental theorems from K0 and K1 to the higher K-groups. We will see proofs later in
the proseminar.

Theorem 2 (Resolution). Let P ⊆ M be a full subcategory of an exact category which is
closed under extension and kernels of M-admissible epi’s and such that for every M ∈ M
there is a resolution 0 → P1 → P0 → M → 0 with P0, P1 ∈ P. Then BQP → BQM is a
homotopy equivalence.

Corollary 1. The Cartan homomorphism K∗(R)→ G∗(R) is an isomorphism for a regular
ring R.

Theorem 3 (Devissage). Let A be a small abelian category and B ⊆ A be a full abelian
subcategory such that the inclusion functor is exact. Suppose also that every object of A
admits a finite filtration whose quotients are objects of B. Then BQB → BQA is a homotopy
equivalence.
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Theorem 4 (Localisation). Let A be a small abelian category, let B be a full abelian sub-
category which is closed under subobjects, quotients, and extensions (this is called a Serre
subcategory), and let A/B be the quotient. Then BQB → BQA → BQA/B is a homotopy
fiber sequence.

Theorem 5 (Fundamental Theorem). For a Noetherian ring R, we have
(1) Gi(R) ∼= Gi(R[t]) for all i ≥ 0
(2) Gi(R[t, t−1]) ∼= Gi(R)⊕Gi−1(R) for all i ≥ 0 (with G−1(R) = 0).

2. + = Q

The main goal will be to prove

Theorem 6. For a ring R,

ΩB(QP(R)) ' BGl(R)+ ×K0(R).

We will do this by introducing yet one more construction: the category S−1S associated
to any symmetric monoidal category S. We will then prove

Theorem 7. For S = isoP(R), we have

B(S−1S) ' BGl(R)+ ×K0(R).

and

Theorem 8. For C a split exact category and S = isoC , we have

ΩB(QC ) ' B(S−1S).

2.1. The S−1S construction
Suppose that S is a symmetric monoidal category. Then BS is an H-space, the product
being given by ⊕ : S × S → S. Moreover, the axioms for a symmetric monoidal category
imply that BS is in fact homotopy-associative and homotopy-commutative (in fact BS is
associate and commutative to up to all higher homotopies, so that is an E∞-space).

Unfortunately, if a category has an inital object then its classifying space is contractible,
so the above H-space will often be uninteresting. On the other hand, there is a way of
obtaining an interesting H-space. Namely, let isoS be the subcategory of isomorphisms of
S. That is, isoS has the same objects as S, but the morphisms are only the isomorphisms
in S. Then isoS is still symmetric monoidal, and so B(isoS) is an H-space.

Example 2. (a) Any additive category is symmetric monoidal, with monoidal product
given by the direct sum.

(b) As an example of (a), the category F(R) of finitely generated free modules over R is
symmetric monoidal, with product given by ⊕. We have

B(isoF(R)) ∼=
∐
M

B(Aut(M)) ∼=
∐
n

BGln(R),

where the coproduct runs over isomorphism classes of finitely generated free modules M .
(c) The category P(R) of finitely generated projective modules over R is symmetric

monoidal, with product given by ⊕. We have

B(isoP(R)) ∼=
∐

B(Aut(P )),

where the coproduct runs over isomorphism classes of finitely generated projective modules
P .
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As before, however, the space B(isoS) is not quite the right space–we need to apply some
sort of group completion.

Definition 5. Let S be a symmetric monoidal category. We define a new category S−1S as
follows. The objects of S−1S are pairs (m,n) of objects in S. A morphism (m,n)→ (p, q)
in S−1S is an equivalence class of triples

(r, r ⊕m f−→ p, r ⊕ n g−→ q)

where a triple of this form is said to be equivalent to a triple

(r′, r′ ⊕m f ′−→ p, r′ ⊕ n g′−→ q)

if there is an isomorphism r ∼= r′ making the relevant diagrams commute.
Composition is defined as follows: given a pair of morphisms

(r, r ⊕m f−→ p, r ⊕ n g−→ q),

and
(s, s⊕ p ϕ−→ u, s⊕ q ψ−→ v),

the composite is defined as

(s⊕ r, s⊕ r ⊕m ϕ◦(s⊕f)−−−−−→ u, s⊕ r ⊕ n ψ(s⊕g)−−−−→ v.

Remark 3. Note that S−1S is symmetric monoidal with (m,n)⊕ (p, q) = (m⊕ p, n⊕ q).
Moreover, we have a (strict) monoidal functor S → S−1S given by m 7→ (m, 0), where 0
is the unit of S. This induces a map BS → B(S−1S) of H-spaces and a map of abelian
monoids

π0(BS)→ π0(B(S−1S)).

In fact π0(B(S−1S)) is an abelian group and the above map is a group completion (the
inverse in π0 of an element (m,n) is (n,m)).

Definition 6. Let S be a symmetric monoidal groupoid. The K-theory space K(S) of S is
then defined to be B(S−1S). For a general symmetric monoidal category S, we define the
K-theory space of S to be K(isoS).

As usual, the K-groups of S are simply the homotopy groups of the K-theory space.
As we have seen above, π0(B(S−1S)) is the group completion of π0(B(S)), so K0(P(R)) =

K0(R) as defined classsically.

2.2. + = S−1S

Definition 7. A group completion of a homotopy associative, homotopy commutative H-
space X is a map X

ϕ−→ Y where Y is again a homotopy associative, homotopy commutative
H-space such that

(1) ϕ∗ : π0(X)→ π0(Y ) is a group completion of the commutative monoid π0(X) and
(2) the induced map ϕ∗ : [π0(X)]−1H∗(X)→ H∗(Y ) is an isomorphism.

Theorem 9. (Quillen) If S is a symmetric monoidal groupoid such that

Aut(s)→ Aut(s⊕ t)

is injective for all s, t ∈ S (we say translations are faithful in S), then BS → B(S−1S) is a
group completion.
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Proof. We have already verified the condition on π0, so it remains to compute the homology
of B(S−1S) and verify that the map gives an isomorphism.

We begin by defining the “translation category” ES as follows: the objects are the objects
of S, and a morphism s→ t in ES is given by isomorphism classes of pairs

(r, r ⊕ s→ t),

where again such a pair is isomorphic to

(r′, r′ ⊕ s→ t)

if we have an isomorphism r ∼= r′ making the appropriate diagram commute.
There is an obvious functor P : S−1S → ES (in fact there are two) given by (s, t) 7→ t.

To compute the homology of BS−1S, we will use the same ideas that go into the proofs of
Quillen’s Theorems A and B. Let G : (S−1S)op × ES → Set be defined by

G((r, s), t) = HomES(P (r, s), t).

Then note that for fixed t ∈ ES
B•(G(−, t), S−1S, ∗) = B•(P ↓ d).

Similarly, for fixed (r, s) ∈ S−1S we have

B•(∗, ES,G((r, s),−)) = B•(P (r, s) ↓ ES).

But since P (r, s) is initial in (P (r, s) ↓ ES), this latter simplicial set is contractible.
Now recall that for any functor G : C op × D → Set we have the double two-sided bar

construction given in bidegree (p, q) by

Bp,q(∗,D , G,C , ∗) =
∐

d0→···→dp

∐
c0→···→cq

G(cq, d0)

where the coproducts run over elements in BpD and BqC , respectively. In our situation,
we have

B•
(
∗, ES,B•(G(−,−), S−1S, ∗)

) ∼= B•,•(∗, ES,G, S−1S, ∗)
∼= B•

(
B•(∗, ES,G(−,−)), S−1S, ∗

)
' B•(∗, S−1S, ∗) = B•(S−1S)

We can now hit this bisimplicial set with the free abelian group functor and take the
alternating sum of face maps to get a double complex. The above analysis shows that
taking homology first in the p direction and then in the q direction gives H∗(B(S−1S)).

Taking homology in the other order gives us a spectral sequence with

E0
p,q =

⊕
t0 → · · · → tp
∈ Bp(ES)

⊕
(r0, s0)→ · · · → (rq, sq)

∈ Bq(P ↓ t0)

Z

converging to H∗(B(S−1S)). We see that

E1
p,q =

⊕
t0 → · · · → tp
∈ Bp(ES)

Hq(B(P ↓ t0)).

Let us take a moment to analyze these fibers B(P ↓ t0).

Lemma 2. For each t0 ∈ ES, the inclusion P−1(t0) ↪→ (P ↓ t0) has a left adjoint I.
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Proof. This will use all of our assumptions about S. The point is that our assumptions
about S imply that given a morphism (u, u⊕ s→ t) from s to t in ES, the u is determined
up to canonical isomorphism (it is by definition defined up to isomorphism). The right
adjoint is then defined by

I : (P (r, s)→ t0) 7→ (u⊕ r, t0)
where u is a choice of representative for the given morphism P (r, s) = s→ t0. The previous
statement imply that any set of choices will be compatible. �

This implies that B(P−1(t0)) → B(P ↓ t0) is a homotopy equivalence for all t0 ∈ ES.
Moreover, P−1(−) now determines a functor on ES: given a morphism α = (u, u⊕ t0 → t1)
in ES, we define a functor P−1(t0)→ P−1(t1) by

P−1(t0) ↪→ (P ↓ t0) α∗−→ (P ↓ t1) I−→ P−1(t1).

In fact, we see that this functor is defined by (r, t0) 7→ (u⊕ r, t1).
Finally, note that projection onto the first coordinate gives an isomorphism of categories

P−1(t0) → S for every t0 ∈ ES. Again, a morphism α = (u, u ⊕ t0 → t1) corresponds,
under these isomorphisms, to translation by u on S.

The above discussion allows us to identify the E1 term of our spectral sequence as

E1
p,q =

⊕
t0 → · · · → tp
∈ Bp(ES)

Hq(BS).

For fixed q, this looks like the chain complex whose homology is the homology of B(ES)
with coefficients in the local system Hq(BS), but Hq(BS) does not give a local coefficient
system. The point is that a morphism (u, u⊕ t0 → t1) in ES induces an endomorphism of
Hq(BS); this endomorphism, as we have seen, is given by translation by u. But translation
by u need not induce a homotopy equivalence on BS.

If we localize with respect to the multiplicatively closed set π0(BS) ⊆ H∗(BS), then each
translation will induce a homotopy equivalence on BS, and [π0(BS)]−1H∗(BS) does define
a local coefficient system on B(ES). Since localization is exact, we now have a spectral
sequence with E1 term given by

E1
p,q =

⊕
t0 → · · · → tp
∈ Bp(ES)

[π0(BS)]−1Hq(BS)

converging to
[π0(BS)]−1H∗(B(S−1S)) ∼= H∗(B(S−1S)).

But now the E2 term is given by

E2
p,q = Hp

(
B(ES), Hq(BS)

)
.

In fact, 0 is initial in ES, so B(ES) is contractible and we have

E2
p,q =

{
[π0(BS)]−1Hq(BS) p = 0
0 p > 0.

Thus the spectral sequence collapses at E2 and we get the desired isomorphism

[π0(BS)]−1H∗(BS) ∼= H∗(B(S−1S)).

�
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Corollary 2. Let S = isoF(R), so that B(S) =
∐
nGln(R). Then

B(S−1S) ' Z×BGl(R)+.

Proof. Let B0 ⊆ B(S−1S) be the component of (0, 0). Then B(S−1S) ' Z × B0, so it
suffices to show B0 ' BGl(R)+. It suffices to construct an acyclic map ϕ : BGl(R)→ B0.

We first define ϕn : BGln(R) → BAut(Rn, Rn) ↪→ B0 to be the map induced by the
homomorphism Gln(R) → Aut(Rn, Rn) given by g 7→ (g, 1). Then the following diagram
commutes for every n:

BGln(R)
ϕn //

⊕R
��

B0

⊕(R,R)

��
BGln+1(R)

ϕn+1 // B0.

Now B0
⊕(R,R)−−−−→ B0 is homotopic to the identity, so passing to hocolim’s, we get BGl(R)→

B0. To see that this induces an isomorphism on homology, we use that B(S−1S) is a group
completion of B(S):

H∗(B(S−1S)) ∼= H∗(BS)
[

1
R

]
∼= colim

(
H∗(BS)

(⊕R)∗−−−−→ H∗(BS)
(⊕R)∗−−−−→ H∗(BS)→ . . .

)
∼= H∗(colim

(
BS

⊕R−−→ BS
⊕R−−→ BS → . . .

)
)

From this description, it is clear that ϕ : BGl(R)→ B0 induces an isomorphism on homol-
ogy, and this gives BGl(R)+ ' B0. �

Definition 8. A monoidal functor F : S → T is cofinal if for every t ∈ T there is t2 ∈ T
and s ∈ S such that t⊕ t2 ∼= F (s).

Corollary 3 (Cofinality). If F : S → T is cofinal and AutS(s) ∼= AutT (F (s)) for all s ∈ S,
then the map B(S−1S)→ B(T−1T ) induces an equivalence of the basepoint components.

Proof. This follows easily from the description of B(S−1S) and B(T−1T ) as group comple-
tions. We will write B0(S−1S) and B0(T−1T ) for the basepoint components. We have

H∗(B0(S−1S)) ∼= colim
ES

H∗(BAutS(s)) ∼= colim
ES

H∗(BAutT (F (s)))

∼= colim
ET

H∗(BAutT (t)) ∼= H∗(B0(T−1T ))

where the colimits are taken over the appropriate translation categories and the identifica-
tion from the first line to the second comes from cofinality. Since B0(S−1S) and B0(T−1T )
are connected H-spaces, this implies that they are equivalent. �

We now get our desired comparison

Theorem 10. Let S = isoP(R). Then

B(S−1S) ' K0(R)×BGl(R)+.

Proof. This follows from Remark 3, Corollary 2, and Corollary 3. �

2.3. S−1S = Q

Let C be an exact category and S = isoC , considered as a symmetric monoidal category
under ⊕.
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Definition 9. We define a new category EC , the category of exact sequences in C , as
follows. The objects are the exact sequences of C . The set of morphisms from A � B � C
to A′ � B′ � C ′ is given by equivalence classes of diagrams

A // // B // // C

A′ // //
OO

α

OO

B // //
��
β

��

C ′′

OOOO

��

��
A′ // // B′ // // C ′,

where two such diagrams are equivalent if there is an isomorphism between them which is
the identity except at C ′′.

Remark 4. This forces the bottom right square to be a pullback square.

Note that T (A ↪→ B � C) = C defines a functor EC → QC . We also have a functor

S = isoC → EC which sends an object C to C
id
� C � 0. Note that the functor S×EC →

EC given by
(s, (A � B � C)) 7→ (s⊕A � s⊕B � C)

defines an “action” of S on EC .

Definition 10. If S acts on D , we can define a new category S−1D whose objects are given
by pairs (s, d) ∈ S ×D . A morphism (s1, d1)→ (s2, d2) is given by an equivalence class of
triples

(t, (t⊕ s1, t⊕ d1)
f,g−−→ (s2, d2)),

where such a triple is equivalent to

(r, (r ⊕ s1, r ⊕ d1)
f ′,g′−−−→ (s2, d2))

if there is an isomorphism t ∼= r making the relevant diagram commute.

Remark 5. Note that the proof of Theorem 9 generalizes easily to give that if S is as in
the theorem and S acts on some category D then

[π0(BS)]−1H∗(BD) ∼= H∗(S−1BD).

Finally, since the functor T : EC → QC defined earlier satisfies

T (s⊕ (A � B � C)) = T (A � B � C),

we get an induced functor T : S−1EC → QC .

Proposition 1. For each C ∈ QC , the inclusion T −1(C) ↪→ (C ↓ T ) has a right adjoint,
so that B(T −1(C)) ' B(C ↓ T ).

Proof. We will define the functor on objects. Let

C → T (s, (A′ � B′ � C ′)) = C ′

be in (C ↓ T ). Suppose the morphism C → C ′ in QC is given by

C � C ′′ � C ′

and form the pullback
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B // //
��

��

C ′′
��

��
B′ // // C ′.

Since B � C ′′ � C is an admissible epimorphism, it has a kernel in C , and we have an
exact sequence

A � B � C.

Our functor then takes
C → T (s, (A′ � B′ � C ′))

to
(s, (A � B � C)).

It is then clear how to define it on morphisms and straightforward to check that this in fact
defines a right adjoint to the inclusion T −1(C) ↪→ (C ↓ T ). �

Proposition 2. Suppose C is split exact and define S → T−1(C) by A 7→ (A � A⊕ C �
C). Then the induced map B(S−1S)→ B(T −1(C)) = B(S−1T−1(C)) is an equivalence.

Theorem 11. Let C be a split exact category and S = isoC . Then the sequence

B(S−1S)→ B(S−1EC ) BT−−→ B(QC )

is a quasifibration sequence.

Proof. We will use Quillen’s Theorem B. It is clear that every comma category (C ↓ T ) is
nonempty. It remains to check that for any morphism f : C → C ′ in QC , the induced map
B(C ′ ↓ T )→ B(C ↓ T ) is a homotopy equivalence. It suffices to do this for morphisms of
the form 0 � C and 0 � C. We use Proposition 1, and note that T −1(0) ' S−1S.

In the first case, we see that the composition of the equivalence B(S−1S)→ B(T −1(C))
of Proposition 2 with f∗ : B(T −1(C)) → B(S−1S) is the identity. It follows that f∗ is an
equivalence.

When f is 0 � C, the same composition is the endofunctor (A,B) 7→ (A,B ⊕ C) on
S−1S. Of course this induces an equivalence on B(S−1S) ((A,B) 7→ (A ⊕ C,B) is a
homotopy inverse). �

Theorem 12. If C is split exact, then ΩBQC ' B(S−1S).

Proof. It remains to show, by the previous theorem, that B(S−1EC ) is contractible. First,
EC is contractible. We can see this by applying Quillen’s Theorem A to the functor m :
EC → iQC defined by m(A � B � C) = B, where iQC is the subcategory of QC
consisting of admissible monomorphisms. Theorem A tells us that this is a homotopy
equivalence (0 � B � B is terminal in (m ↓ B)), but iQC has an initial object and so is
contractible.

But then S certainly acts by homotopy equivalences on EC . It follows by Remark 5 that
B(EC )→ B(S−1EC ) is an equivalence. �


