eCHT Minicourse The Slice Spectral Sequence Problem Set 1 Spring 2022

1. Let $\overline{\rho} = \rho - 1$ denote the reduced regular representation of *G*, and let $a_{\overline{\rho}} \colon S^0 \hookrightarrow S^{\overline{\rho}}$ be the inclusion of the fixed points. Show that the colimit

$$S^{\infty\overline{\rho}} = \operatorname{colim}(S^0 \xrightarrow{a_{\overline{\rho}}} S^{\overline{\rho}} \xrightarrow{a_{\overline{\rho}}} S^{2\overline{\rho}} \xrightarrow{a_{\overline{\rho}}} \dots)$$

is a model for the *G*-space \widetilde{EP} . (Hint: What is the restriction $\downarrow_{H}^{G} \rho$ for *H* a proper subgroup?)

As a consequence, the RO(G)-graded homotopy groups of a geometric fixed point spectrum $\Phi^G X$ can be obtained from those of X by inverting the element $a_{\overline{\rho}}$.

- 2. Display the lattice of subgroups (and corresponding Weyl groups) for the following groups:
 - (a) $G = C_p$,
 - (b) $G = C_{p^2}$,
 - (c) $G = C_2 \times C_2$,
 - (d) $G = C_3 \times C_3$,
 - (e) $G = C_6$, and
 - (f) $G = D_3$, the dihedral group of order 6.
- 3. Given a subgroup $H \leq G$ and an *H*-Mackey functor \underline{M} , there is a *G*-Mackey functor $\uparrow_{H}^{G} \underline{M}$, known as the induced Mackey functor. One way to describe this is by using the alternate characterization of *G*-Mackey functors as indexed over finite *G*-sets, rather than just the *G*-orbits. Then, for a finite *G*-set *X*, the value of $\uparrow_{H}^{G} \underline{M}$ at *X* is the value of \underline{M} at the *H*-set $\downarrow_{H}^{G} X$.

Determine the following induced Mackey functors, including the actions of the Weyl groups.

(a) $\uparrow_{e}^{C_{p}} \mathbb{Z}$. (b) $\uparrow_{e}^{C_{p^{2}}} \mathbb{Z}$. (c) $\uparrow_{C_{2}}^{C_{4}} \underline{M}$, for $\underline{M} \in Mack(C_{2})$. (d) $\uparrow_{C_{2}}^{C_{2} \times C_{2}} \underline{M}$, for $\underline{M} \in Mack(C_{2})$. 4. In the slice spectral sequence for $k\mathbb{R}$, there was an extension problem left to solve. Namely, from the slice spectral sequence, we get an extension of Mackey functors

$$\underline{g} \hookrightarrow \underline{\pi}_2(k\mathbb{R}) \twoheadrightarrow \underline{\mathbb{Z}}^{\sigma}.$$

For any C_2 -spectrum *X*, the transfer map for the Mackey functor $\underline{\pi}_n(X)$ fits into an exact sequence

$$\pi_n^e(X) \to \pi_n^{C_2}(X) \to \pi_n^{C_2}(\Sigma^\sigma X).$$

Use this to determine the Mackey functor $\underline{\pi}_2(k\mathbb{R})$.

5. We computed that the nontrivial homotopy Mackey functors of $\Sigma^{\rho} H_{C_2} \mathbb{Z}$ are

$$\underline{\pi}_n(\Sigma^{\rho}H_{C_2}\underline{\mathbb{Z}}) \cong \begin{cases} \underline{\mathbb{Z}}^{\sigma} & n=2\\ \underline{g} & n=1. \end{cases}$$

This corresponds to the existence of a fiber sequence

$$\Sigma^2 H_{C_2} \underline{\mathbb{Z}}^{\sigma} \longrightarrow \Sigma^{\rho} H_{C_2} \underline{\mathbb{Z}} \longrightarrow \Sigma^1 H_{C_2} \underline{\mathbb{Z}}.$$

- (a) Compute the homotopy Mackey functors of $\Sigma^{2\rho}H_{C_2}\underline{\mathbb{Z}}$ by showing that $\Sigma^{\rho}H_{C_2}\underline{\mathbb{Z}} \simeq \Sigma^1 H_{C_2}\underline{\mathbb{Z}}$ and that $\Sigma^{\rho}H_{C_2}\underline{\mathbb{Z}}^{\sigma} \simeq \Sigma^2 H_{C_2}\underline{\mathbb{Z}}$.
- (b) Use induction to compute the homotopy Mackey functors of $\Sigma^{n\rho}H_{C_2}\mathbb{Z}$, for $n \ge 0$.
- (c) We also saw that $\Sigma^{-\rho} H_{C_2} \mathbb{Z} \simeq \Sigma^{-2} H_{C_2} \mathbb{Z}^{\sigma}$. Use the fiber sequence

 $\Sigma^{-\sigma}X \longrightarrow X \longrightarrow C_{2+} \wedge X$

to inductively compute the homotopy Mackey functors of $\Sigma^{-n\rho}H_{C_2}\mathbb{Z}$.

- 6. Show that $\Sigma^n H_{C_2} \mathbb{Z}$ is an *n*-slice for n = 0, ..., 6.
- 7. For $G = C_2$, find the 1-slice $P_1^1(S^1)$.