eCHT Minicourse
 The Slice Spectral Sequence Problem Set 1
 Spring 2022

1. Let $\bar{\rho}=\rho-1$ denote the reduced regular representation of G, and let $a_{\bar{\rho}}: S^{0} \hookrightarrow S^{\bar{\rho}}$ be the inclusion of the fixed points. Show that the colimit

$$
S^{\infty \bar{\rho}}=\operatorname{colim}\left(S^{0} \xrightarrow{a_{\bar{\rho}}} S^{\bar{\rho}} \xrightarrow{a_{\bar{\rho}}} S^{2 \bar{\rho}} \xrightarrow{a_{\bar{\rho}}} \ldots\right)
$$

is a model for the G-space $\widetilde{E \mathcal{P}}$. (Hint: What is the restriction $\downarrow_{H}^{G} \rho$ for H a proper subgroup?)
As a consequence, the $R O(G)$-graded homotopy groups of a geometric fixed point spectrum $\Phi^{G} X$ can be obtained from those of X by inverting the element $a_{\bar{\rho}}$.
2. Display the lattice of subgroups (and corresponding Weyl groups) for the following groups:
(a) $G=C_{p}$,
(b) $G=C_{p^{2}}$,
(c) $G=C_{2} \times C_{2}$,
(d) $G=C_{3} \times C_{3}$,
(e) $G=C_{6}$, and
(f) $G=D_{3}$, the dihedral group of order 6 .
3. Given a subgroup $H \leq G$ and an H-Mackey functor \underline{M}, there is a G-Mackey functor $\uparrow_{H}^{G} \underline{M}$, known as the induced Mackey functor. One way to describe this is by using the alternate characterization of G-Mackey functors as indexed over finite G-sets, rather than just the G-orbits. Then, for a finite G-set X, the value of $\uparrow_{H}^{G} \underline{M}$ at X is the value of \underline{M} at the H-set $\downarrow_{H}^{G} X$.
Determine the following induced Mackey functors, including the actions of the Weyl groups.
(a) $\uparrow_{e}^{C_{p}} \mathbb{Z}$.
(b) $\uparrow_{e}^{C_{p}}{ }^{2} \mathbb{Z}$.
(c) $\uparrow_{C_{2}}^{C_{4}} \underline{M}$, for $\underline{M} \in \operatorname{Mack}\left(C_{2}\right)$.
(d) $\uparrow_{C_{2}}^{C_{2} \times C_{2}} \underline{M}$, for $\underline{M} \in \operatorname{Mack}\left(C_{2}\right)$.
4. In the slice spectral sequence for $k \mathbb{R}$, there was an extension problem left to solve. Namely, from the slice spectral sequence, we get an extension of Mackey functors

$$
\underline{g} \hookrightarrow \underline{\pi}_{2}(k \mathbb{R}) \rightarrow \underline{\mathbb{Z}}^{\sigma} .
$$

For any C_{2}-spectrum X, the transfer map for the Mackey functor $\underline{\pi}_{n}(X)$ fits into an exact sequence

$$
\pi_{n}^{e}(X) \rightarrow \pi_{n}^{C_{2}}(X) \rightarrow \pi_{n}^{C_{2}}\left(\Sigma^{\sigma} X\right)
$$

Use this to determine the Mackey functor $\underline{\pi}_{2}(k \mathbb{R})$.
5. We computed that the nontrivial homotopy Mackey functors of $\Sigma^{\rho} H_{C_{2}} \underline{\mathbb{Z}}$ are

$$
\underline{\pi}_{n}\left(\Sigma^{\rho} H_{C_{2}} \underline{\mathbb{Z}}\right) \cong \begin{cases}\underline{\mathbb{Z}}^{\sigma} & n=2 \\ \underline{g} & n=1\end{cases}
$$

This corresponds to the existence of a fiber sequence

$$
\Sigma^{2} H_{C_{2}} \underline{\mathbb{Z}}^{\sigma} \longrightarrow \Sigma^{\rho} H_{C_{2}} \underline{\mathbb{Z}} \longrightarrow \Sigma^{1} H_{C_{2}} \underline{g} .
$$

(a) Compute the homotopy Mackey functors of $\Sigma^{2 \rho} H_{C_{2}} \underline{\mathbb{Z}}$ by showing that $\Sigma^{\rho} H_{C_{2}} \underline{g} \simeq$ $\Sigma^{1} H_{C_{2}} \underline{g}$ and that $\Sigma^{\rho} H_{C_{2}} \underline{\mathbb{Z}^{\sigma}} \simeq \Sigma^{2} H_{C_{2}} \underline{\mathbb{Z}}$.
(b) Use induction to compute the homotopy Mackey functors of $\Sigma^{n \rho} H_{C_{2}} \underline{Z}$, for $n \geq 0$.
(c) We also saw that $\Sigma^{-\rho} H_{C_{2}} \underline{\mathbb{Z}} \simeq \Sigma^{-2} H_{C_{2}} \underline{\mathbb{Z}}^{\sigma}$. Use the fiber sequence

$$
\Sigma^{-\sigma} X \longrightarrow X \longrightarrow C_{2+} \wedge X
$$

to inductively compute the homotopy Mackey functors of $\Sigma^{-n \rho} H_{C_{2}} \underline{\mathbb{Z}}$.
6. Show that $\Sigma^{n} H_{C_{2}} \underline{\mathbb{Z}}$ is an n-slice for $n=0, \ldots, 6$.
7. For $G=C_{2}$, find the 1 -slice $P_{1}^{1}\left(S^{1}\right)$.

