eCHT Minicourse The Slice Spectral Sequence Problem Set 2 Spring 2022

- 1. Show that $\Sigma^{\sigma} H_{C_2} g \simeq H_{C_2} g$, and use this to compute $\Phi^{C_2} H_{C_2} g$.
- 2. Show that $\Phi^{C_4}X \simeq \Phi^{C_4/C_2}X^{C_2}$. (Hint: show that, if $p: C_4 \longrightarrow C_4/C_2$ denotes the quotient map, then $p^*\widetilde{E\mathcal{P}_{C_2}}$ is a model for $\widetilde{E\mathcal{P}_{C_4}}$.)
- 3. For $G = C_2$, show that a map of C_2 -spectra $f: X \longrightarrow Y$ is a $\underline{\pi}_*$ -isomorphism if and only if it yields an isomorphism of $RO(C_2)$ -graded homotopy groups. (Hint: Use the cofber sequence $C_{2+} \rightarrow S^0 \rightarrow S^{\sigma}$.)
- 4. (C_4 -slice towers)
 - (a) Use Figure 3 of HHR's article on the C_4 -analogue of real *K*-theory to show that $\Sigma^n H_{C_4} \mathbb{Z}$ is an *n*-slice for $0 \le n \le 4$.
 - (b) The C_4 -Mackey functor $\underline{\mathbb{Z}}(2,1)$ is displayed to the right. Show that there is a short exact sequence of C_4 -Mackey functors

$$\underline{\mathbb{Z}}(2,1) \hookrightarrow \underline{\mathbb{Z}} \twoheadrightarrow \underline{g} = \phi_{C_4}^* \mathbb{Z}/2.$$

(c) Show that

$$P_8^8 = \Sigma^2 H_{C_4} \underline{g} \longrightarrow \Sigma^5 H_{C_4} \underline{\mathbb{Z}} \longrightarrow \Sigma^{3+2\sigma} H_{C_4} \underline{\mathbb{Z}} = P_5^5$$

is the slice tower for $\Sigma^5 H_{C_4} \mathbb{Z}$. (Hint: Figure 6 of the C_4 -article of HHR tells you that $\Sigma^{2-2\sigma} H_{C_4} \mathbb{Z} \simeq H_{C_4} \mathbb{Z}(2,1)$.)

- 5. We described the Mackey functors $\underline{\pi}_n k\mathbb{R}$, for $n \ge 0$. This then yields the Mackey functors $\underline{\pi}_n K\mathbb{R}$, for $n \in \mathbb{Z}$, using the 8-fold periodicity of $K\mathbb{R}$. Use the ρ -periodicity of $K\mathbb{R}$ to write down the $RO(C_2)$ -graded Mackey functors $\underline{\pi}_* K\mathbb{R}$. Display these in a chart, and display the nontrivial *a*-multiplications.
- 6. Use the equivalences

$$HQ\underline{\mathbb{Z}}^{\sigma} \simeq \Sigma^{3-3\sigma}H\underline{\mathbb{Z}}$$
 and $H\underline{\mathbb{Z}}^* \simeq \Sigma^{2-2\sigma}H\underline{\mathbb{Z}}$

to show that

$$I_{\mathbb{Z}}HQ\underline{\mathbb{Z}}^{\sigma}\simeq\Sigma^{\sigma-1}H\underline{\mathbb{Z}}.$$