June 2007

1. Let C be a cyclic group of order 6. Find necessary and sufficient conditions on a group G in order that $C \times G$ be a cyclic group.

2. Let R be a non-zero ring containing $1 \neq 0$ such that the function $r \mapsto r^2$ from R to R is a homomorphism of rings. Prove that R is a commutative ring of characteristic 2.

3. Prove that the group of automorphisms of the abelian group $\mathbb{Z}_3 \times \mathbb{Z}$ has 12 elements.

4. Precisely state the Sylow Theorems.
 Let G be a group of order 105.
 Let $n_p(G)$ denote the number of p-Sylow subgroups of G as usual.
 For each prime p less than 10 determine possible values of $n_p(G)$ and the corresponding estimate of number of elements of order p in G.
 Using these calculations or otherwise prove that G cannot be simple.

5. Let $k \subset L$ be a Galois extension where $|Gal(L/k)| = 75$.
 (a) Prove that there is a unique field F with $k \subset F \subset L$ such that $[F : k] = 3$.
 (b) Prove that the field F constructed above is a Galois extension of k.

Please turn over.
6. Let \(V \) be a 3-dimensional vector space over a field \(k \). Assume that you have three linear transformations \(f, g, h \) from \(V \) to \(k \) with the following properties.

- There is \(u \in V \) such that \(f(u) = 1, g(u) = h(u) = 0 \).
- There is \(v \in V \) such that \(g(v) = h(v) = 1 \).
- There is \(w \in V \) such that \(g(w) = 2, h(w) = 3 \).

Define a linear transformation from \(V \) to \(k^3 \) by \(L(t) = \begin{pmatrix} f(t) \\ g(t) \\ h(t) \end{pmatrix} \).

Answer the following:

(a) Determine if \(L \) is surjective.
(b) Determine if \(L \) is injective.
(c) Determine \(\ker(f) \cap \ker(g) \cap \ker(h) \).

7. Consider the polynomial \(X^5 - 2 \) over \(\mathbb{Z}_{11} \) and let \(R = \mathbb{Z}_{11}[X]/(X^5 - 2) \).
As usual, identify \(\mathbb{Z}_{11} \) with its image in \(R \).
Define the ring homomorphism \(\sigma : R \to R \) by \(\sigma(t) = t^{11} \) for all \(t \in R \).

(a) Determine the order of \(\sigma \) (i.e. the smallest \(n \) such that \(\sigma^n = Id \)).
(b) Using the above or otherwise, argue that \(R \) is a field.
(c) Determine the Galois group of \(R \) over \(\mathbb{Z}_{11} \).

8. Give the precise definition of a prime ideal and a maximal ideal in a commutative ring \(T \) with \(1 \neq 0 \).
Let \(R = \mathbb{Z}[X] \).

(a) Determine with proof if \(I = (X^4 + 2, X^2 + 1) \subset R \) is prime or maximal or neither.
(b) Determine with proof if \(J = (X^4 + X, X^2 + 1) \subset R \) is prime or maximal or neither.