Algebra Prelim

June 1, 2011

- Provide proofs for unsupported statements and cite supporting theorems
- Do as many problems as you can while giving careful solutions

Good Luck!

- 1. Let G be a finite simple group where |G| = 210. Find the number of elements of G having order 7.
- 2. Let G be a group such that G/Z(G) is a cyclic group. Prove that G is abelian (here Z(G) denotes the center of G).
- 3. Let V be a vector space over a field F and let $T: V \to V$ be a linear map. Let $Fix(T) = \{v | T(v) = v\}$. Then Fix(T) is a subspace of V (you do not need show this). Now suppose that $T \circ T = T$. Prove the following:
 - (a) Fix(T) = Im(T), where Im(T) denotes the image of T.
 - (b) $Ker(T) \cap Im(T) = \{0\}.$
 - (c) Ker(T) + Im(T) = V, where + here denotes the usual sum of subspaces.
- 4. Let $A \in \mathcal{M}_{n \times n}(\mathbf{C})$ be a Hermitian matrix. Prove or disprove (with a counterexample) the following statements:
 - (a) $det(A) \in \mathbf{R}$.
 - (b) |det(A)| = 1.
 - (c) If A has exactly one eigenvalue then A is a real matrix.
 - (d) If $v = (v_1, \ldots, v_n)^T$ is an eigenvector of A then $\overline{v} = (\overline{v_1}, \ldots, \overline{v_n})^T$ is also an eigenvector for A (here $\overline{v_i}$ denotes the complex conjugate of v_i).
- 5. Let $f(x) = x^{12} 1 \in \mathbf{Q}[x]$ and let $L \subset \mathbf{C}$ be a splitting field of f(x) over \mathbf{Q} . Then:
 - (a) Determine the isomorphism type of $Gal(L/\mathbf{Q})$
 - (b) Give an explicit description of all the subfields of L (by giving generators for each of these over \mathbf{Q}).

(please turn over)

- 6. Let K be a field and let $f(x) \in K[x]$. Then let L be a splitting field of f(x) over K. Assume that f(x) has degree n for some $n \ge 1$ and that f(x) has n distinct roots $\alpha_1, \alpha_2, \ldots, \alpha_n$ in L. Suppose that for every i, j with $1 \le i, j \le n$ there is an automorphism σ of L over K such that $\sigma(\alpha_i) = \alpha_j$. Prove that f(x) is irreducible in K[x].
- 7. Show that the following polynomials are irreducible elements of the given integral domains.
 - (a) $f(x) = 2x^4 + 120x^3 30x^2 + 18x + 60 \in \mathbf{Q}[x]$
 - (b) $f(x) = 5x^3 2x^2 3x + 105 \in \mathbf{Q}[x]$
 - (c) $f(x,y) = x^2y + xy^2 x y + 1 \in \mathbf{Q}[x,y]$
- 8. Let K be a field that is a subfield of the integral domain S. So S is a vector space over K. If $\dim_K(S) \leq \infty$ show that S is a field.
- 9. Prove that there is a surjective ring homomorphism $\mathbf{Z} \to \mathbf{Z}/(2) \times \mathbf{Z}/(3)$ and that there is not a surjective ring homomorphism $\mathbf{Z} \to \mathbf{Z}/(6) \times \mathbf{Z}/(10)$.
- 10. Let $k \subset L$ be a Galois extension where G = Gal(L/k) and where |G| = 150. Now suppose we have $k \subset K \subset L$ where $k \subset K$ is a Galois extension of degree 2. Prove that there is exactly one K' with $k \subset K' \subset L$ where [L : K'] = 25. Hint. This is essentially a Sylow subgroup problem.