MA 114 Worksheet # 29: Area and arc length in polar coordinates

- 1. Given the circle represented by $x^2 + (y-2)^2 = 4$
 - (a) Find the polar representation for this equation.
 - (b) Calculate the area enclosed by $0 \le \theta \le \pi/4$.
 - (c) Sketch the area calculated.
- 2. The equation $r = 2\sin(2\theta)$ represents the "four petaled rose".
 - (a) Find the area of one of the petals of the rose.
 - (b) Given the circle $x^2 + y^2 = 1$, find the area between the rose and the circle (using the rose as the outer curve).
 - (c) Find the area between the rose and the circle using the circle as the outer curve.
- 3. The equation $r = 2 2\cos\theta$ represents a "cardioid".
 - (a) Sketch the cardioid.
 - (b) Find the area enclosed by the cardioid.
 - (c) Compute the arc length of the cardioid.
- 4. Consider the sequence of circles, C_n , defined by the equations $x^2 + \left(y + \frac{1}{\sqrt{n}}\right)^2 = \frac{1}{n}$. Define a_n as the area of circle C_n and b_n as the area between circles C_n and C_{n+1} .
 - (a) Sketch the picture of this infinite sequence of circles.

(b) Does
$$\sum_{n=1}^{\infty} a_n$$
 converge?
(c) Does $\sum_{n=1}^{\infty} b_n$ converge?

(d) Define the circles D_n by the equations $x^2 + \left(y + \frac{1}{n}\right)^2 = \frac{1}{n^2}$ with d_n as the area of D_n . Does

$$\sum_{n=1}^{\infty} d_n \text{ converge?}$$