MA 114 Worksheet # 10: Taylor Series & Taylor Polynomials

- 1. Find a power series representation for
 - (a) $f(x) = x \cos(x^2)$.
 - (b) $g(x) = (1+x)e^{-x}$.
- 2. Show that $\lim_{x\to 0} \frac{e^x \cos(x)}{\sin(x)} = 1$ using power series. Verify your answer with l'Hospital's Rule. [HINT: Write out the power series for each term and factor out the lowest power of x from the numerator and the denominator, and then consider the limit.]
- 3. What is $T_3(x)$ centered at a = 3 for a function f(x) where f(3) = 9, f'(3) = 8, f''(3) = 4, and f'''(3) = 12?
- 4. Calculate the Taylor polynomials $T_2(x)$ and $T_3(x)$ centered at x = a for the given function and value of a.
 - (a) $f(x) = \tan x, a = \frac{\pi}{4}$ (b) $f(x) = x^2 e^{-x}, a = 1$ (c) $f(x) = \frac{\ln x}{x}, a = 1$
- 5. Let $T_2(x)$ be the Taylor polynomial of $f(x) = \sqrt{x}$ at a = 4. Apply the error bound to find the maximum possible value of $|f(1.1) T_2(1.1)|$. Show that we can take $K = e^{1.1}$.
- 6. (a) Let $f(x) = 3x^3 + 2x^2 x 4$. Calculate $T_k(x)$ for k = 1, 2, 3, 4, 5 at both a = 0 and a = 1. Show that $T_3(x) = f(x)$ in both cases.
 - (b) Let $T_n(x)$ be the n^{th} Taylor polynomial at x = a for a polynomial f(x) of degree n. Based on part (a), guess the value of $|f(x) T_n(x)|$. Prove that your guess is correct using the error bound.