Worksheet #12: Density and Average Value & Volumes of Revolution (Disk Method)

- 1. Conceptual Understanding:
 - (a) If the linear mass density of a rod at position x is given by the function $\rho(x)$, what integral should be evaluated to find the mass of the rod between points a and b?
 - (b) If the radial mass density of a disk centered at the origin is given by the function $\rho(r)$, where r is the distance from the center point, what integral should be evaluated to find the mass of a disk of radius R?
 - (c) Write down the equation for the average value of an integrable function f(x) on [a, b].
- 2. Find the total mass of a 1-meter rod whose linear density function is $\rho(x) = 10(x+1)^{-2}$ kg/m for $0 \le x \le 2$.
- 3. Find the average value of the following functions over the given interval.

(a) $f(x) = x^3$, [0, 4]	(e) $f(x) = \frac{\sin(\pi/x)}{x^2}, \ [1,2]$
(b) $f(x) = x^3$, $[-1, 1]$	(f) $f(x) = e^{-nx}$, [-1, 1]
(c) $f(x) = \cos(x), \ \left[0, \frac{\pi}{6}\right]$	(g) $f(x) = 2x^3 - 6x^2$, [-1,3]
(d) $f(x) = \frac{1}{x^2 + 1}, \ [-1, 1]$	(h) $f(x) = x^n$ for $n \ge 0, [0, 1]$

- 4. Odzala National Park in the Republic of the Congo has a high density of gorillas. Suppose that the radial population density is $\rho(r) = 52(1+r^2)^{-2}$ gorillas per square kilometer, where r is the distance from a grassy clearing with a source of water. Calculate the number of gorillas within a 5 km radius of the clearing.
- 5. Find the total mass of a circular plate of radius 20 cm whose mass density is the radial function $\rho(r) = 0.03 + 0.01 \cos(\pi r^2) \text{ g/cm}^2$.
- 6. Find the volume of the solid obtained by rotating the region bounded by $y = \frac{1}{x^5}$, y = 0, x = 1, and x = 6, about the x-axis.
- 7. Find the volume of the solid obtained by rotating the region bounded by f(x) = sin(x) and the x-axis over the interval [0, π] about the x-axis.
 [Hint: You may use the trig identity sin²(x) = 1/2(1 cos(2x)) in order to evaluate the integral.]
- 8. Find the volume of the solid obtained by rotating the region in the first quadrant bounded by the curves x = 0, y = 1, $x = y^{11}$, about the line y = 1.
- 9. For each of the following, use disks or washers to find the integral expression for the volume of the region.
 - (a) R is the region bounded by $y = 1 x^2$ and y = 0; about the x-axis.
 - (b) R is the region bounded by $x = 2\sqrt{y}$, x = 0, and y = 9; about the y-axis.
 - (c) R is the region bounded by $y = 1 x^2$ and y = 0; about the line y = -1.
 - (d) Between the regions in part (a) and part (c), which volume is bigger? Why? First argue without computing the integrals, then also evaluate the integrals to check your answer.
 - (e) R is the region bounded by $y = e^{-x}$, y = 1 and x = 2; about the line y = 2.

(f) R is the region bounded by y = x and $y = \sqrt{x}$; about the line x = 2.

- 10. Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. $y = 0, y = \cos(2x), x = \frac{\pi}{2}, x = 0$ about the line y = -6.
- 11. Find the volume of the cone obtained by rotating the region in the first quadrant under the segment joining (0, h) and (r, 0) about the y-axis.
- 12. A soda glass has the shape of the surface generated by revolving the graph of $y = 6x^2$ for $0 \le x \le 1$ about the *y*-axis. Soda is extracted from the glass through a straw at the rate of 1/2 cubic inch per second. How fast is the soda level in the glass dropping when the level is 2 inches? (Answer should be implicitly in units of inches per second.)
- 13. The torus is the solid obtained by rotating the circle (x a)² + y² = b² around the y-axis (assume that a > b). Show that it has volume 2π²ab².
 [Hint: Draw a picture, set up the problem and evaluate the integral by interpreting it as the area of a circle.]