MA 114 Worksheet #13: Volumes of Revolution (Shell Method)

- 1. Conceptual understanding of disk and shell method:
 - (a) Write a general integral to compute the volume of a solid obtained by rotating the region under y = f(x) over the interval [a, b] about the y-axis using the method of cylindrical shells.
 - (b) If you use the disk method to compute the same volume, are you integrating with respect to x or y? Why?
- 2. Sketch the enclosed region and use the Shell Method to calculate the volume of rotation about the y-axis.
 - (a) y = 3x 2, y = 6 x, x = 0
 - (b) $y = x^2$, $y = 8 x^2$, x = 0, for $x \ge 0$
- 3. Sketch the enclosed region and use the Shell Method to calculate the volume of the solid when rotated about the x-axis.
 - (a) $x = \frac{1}{4}y + 1$, $x = 3 \frac{1}{4}y$, y = 0
 - (b) x = y(4 y), x = 0
- 4. Use both the Shell and Disk Methods to calculate the volume obtained by rotating the region under the graph of $f(x) = 8 x^3$ for $0 \le x \le 2$ about:
 - (a) the x-axis
 - (b) the y-axis
- 5. Use the Shell method to find the volume obtained by rotating the region bounded by $y = x^2 + 2$, y = 6, x = 0, and x = 2 about the following axes:
 - (a) x = 2
 - (b) x = -3
- 6. Find the volume of the solid obtained by rotating the following region about the y-axis.
 - (a) The region bounded by $f(x) = e^x$ and the x-axis from $0 \le x \le 2$.
 - (b) The region bounded by $f(x) = \sin(x)$ and the x-axis from $0 \le x \le \pi$.
 - (c) The region bounded $f(x) = \ln(x)$ and the x-axis from $1 \le x \le 3$.