MA 114 Worksheet # 16: Review for Exam 2

- 1. Power, Maclaurin, and Taylor Series
 - (a) Find the Maclaurin series for $\frac{x^2}{1+x}$.
 - (b) Find the Taylor series for $\cos x$ about $a = \pi/2$.
 - (c) Find the Taylor series centered at c = 0 of $\frac{2}{4-3x}$ and determine its radius of convergence.
 - (d) Find the Taylor series centered at zero of the function $f(x) = \ln(x+5)$.
 - (e) Find the Taylor series centered at zero of the function $g(x) = x^3 \ln(x^2 + 5)$.
- 2. Compute $T_3(x)$, the Taylor polynomial of the third order centered at x = 0, for $f(x) = \cos(x/\pi)$.
- 3. Compute $T_n(x)$, the Taylor polynomial of the *n*th order centered at x = 0, for $f(x) = e^{3x}$.
- 4. Let $f(x) = e^{-x}$. First compute $T_3(x)$ and then use the error bound to show that $|f(x) T_3(x)| \le x^4/24$ for all $x \ge 0$.
- 5. Density and average value:
 - (a) Find the total mass of a circular plate of radius 20 cm whose mass density is the radial function $\rho(r) = 0.03 + 0.01 \cos(\pi r^2) \text{ g/cm}^2$.
 - (b) Find the average value of $f(x) = \sin(x)\cos(x)$ over $[0, \pi]$.
- 6. Volume of solid with known cross section:

Calculate the volume of the following solid. The base is the region enclosed by $y = 2 - x^2$ and the x-axis. The cross sections perpendicular to the y-axis are squares.

- 7. Volumes:
 - (a) (Disks) Let V be the volume of a right circular cone of height 10 whose base is a circle of radius
 4. Use similar triangles to find the area of a horizontal cross section at a height y. Using this area, calculate the volume V by integrating the cross-sectional area.
 - (b) (Washers) Let R be a region bounded by $y = x^2$ and y = 1, if R is rotated about x-axis, what is the volume of the resulting solid?
 - (c) (Cylindrical Shells) V is obtained by rotating the region under the graph $y = 3x^2$ for $0 \le x \le 2$ about the y-axis. Calculate the volume of V.
- 8. Work:

Calculate the work against gravity required to build a right circular cone of height 4 m and radius 2 m out of a lightweight material of density 600 kg/m^3 . (See also question 7(a).)

9. Trigonometric Integrals:

(a)
$$\int \sin^2(x) \cos^3(x) dx$$

(b)
$$\int \tan^3(x) \sec^3(x) dx$$