MA 114 Worksheet # 23: Graphical Methods

1. Match the differential equation with its slope field. Give reasons for your answer.

$$y' = 2 - y$$
 $y' = x(2 - y)$ $y' = x + y - 1$ $y' = \sin(x)\sin(y)$

Figure 1: Slope fields for Problem 1

2. Use slope field labeled IV to sketch the graphs of the solutions that satisfy the given initial conditions

$$y(0) = -1, \quad y(0) = 0, \quad y(0) = 1.$$

- 3. Sketch the slope field of the differential equation. Then use it to sketch a solution curve that passes through the given point
 - (a) y' = y 2x, (1,0)
 - (b) $y' = xy x^2$, (0, 1)
- 4. Show that the isoclines of y' = t are vertical lines. Sketch the slope field for $-2 \le t \le 2$, $-2 \le y \le 2$ and plot the integral curves passing through (0,1) and (0,-1).