MA 114 Worksheet # 28:

Arc Length, Speed, Surface Area & Polar Coordinates

- 1. Consider the curve parametrized by $c(t) = (t^4, t^6)$
 - (a) Find a cartesian equation for this curve.
 - (b) Find the arc length for this curve for $0 \le t \le 1$. Which part of the curve given in part (a) does this compute?
 - (c) Find the arc length for this curve for $-1 \le t \le 1$. Which part of the curve given in part (a) does this compute? How do you interpret your answer?
- 2. A "logarithmic spiral" is parametrized by $c(t) = (e^t \cos(t), e^t \sin(t))$.
 - (a) Find the slope of the tangent lines, and use this to sketch this curve, for $0 \le t \le 2\pi$.
 - (b) Find the speed s'(t).
 - (c) Find the length of the curve, again for $0 \le t \le 2\pi$.
 - (d) What does the curve look like, for $-2\pi \le t \le 0$?
- 3. The curve parametrized by $c(t) = (\cos^3(t), \sin^3(t))$ is known as the "astroid".
 - (a) Sketch this curve, for $0 \le t \le \pi$.
 - (b) Find the length of this curve.
- (c) Find the area of the surface obtained by revolving the astroid around the *x*-axis.
- 4. Convert from rectangular to polar coordinates:
 - (a) $(1,\sqrt{3})$ (c) (2,-2)
 - (b) (-1,0)
- 5. Convert from polar to rectangular coordinates:

(a)
$$\left(2, \frac{\pi}{6}\right)$$
 (c) $\left(1, -\frac{\pi}{4}\right)$
(b) $\left(-1, \frac{\pi}{2}\right)$

6. Sketch the graph of the polar curves:

(a)
$$\theta = \frac{3\pi}{4}$$
 (b) $r = \pi$

- 7. Find the equation in polar coordinates of the line through the origin with slope $\frac{1}{3}$.
- 8. Find the polar equation for:

(a)
$$x^2 + y^2 = 9$$
 (c) $y = 4$
(b) $x = 4$

- 9. Convert the equation of the circle $r = 2\sin\theta$ to rectangular coordinates and find the center and radius of the circle.
- 10. Given the circle represented by $x^2 + (y-2)^2 = 4$
 - (a) Find the polar representation for this equation.
 - (b) Calculate the area enclosed by $0 \le \theta \le \pi/4$.
 - (c) Sketch the area calculated.