MA 114 Worksheet # 9: Power Series & Taylor Series

1. Use term by term integration and the fact that $\int \frac{1}{1+x^2} dx = \arctan(x)$ to derive a power series centered at x = 0 for the arctangent function. [HINT: $\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$.]

2. Use the same idea as above to give a series expression for $\ln(1+x)$, given that $\int \frac{dx}{1+x} = \ln(1+x)$. You will again want to manipulate the fraction $\frac{1}{1+x} = \frac{1}{1-(-x)}$ as above.

- 3. Write $(1 + x^2)^{-2}$ as a power series. [HINT: Use term by term differentiation.]
- 4. Find the terms through degree 3 of the Maclaurin series of f(x).
 - (a) $f(x) = (1+x)^{1/4}$. (b) $f(x) = e^{\sin(x)}$.
- 5. Find the Taylor series centered at c and find the interval on which the expansion converges to f.

(a)
$$f(x) = \frac{1}{r}$$
 at $c = 1$.

- (b) $f(x) = e^{3x}$ at c = -1.
- (c) $f(x) = x^3 + 3x 1$ at c = 0.
- (d) $f(x) = x^3 + 3x 1$ at c = 2.