SPEAKER:

Patrick Tolksdorf, Johannes Gutenberg-Universität Mainz Institut für Mathematik

TITLE:

 L^p -extrapolation of the generalized Stokes operator

ABSTRACT:

In this talk, we discuss the Stokes operator with bounded measurable coefficients μ , formally given by

$$Au := -\operatorname{div}(\mu \nabla u) + \nabla \phi, \quad \operatorname{div}(u) = 0 \quad \text{in } \mathbb{R}^d.$$
 (1) Eq: Stokes

This operator satisfies L²-resolvent estimates of the form

$$\|\lambda(\lambda+A)^{-1}f\|_{\mathcal{L}^2} \le C\|f\|_{\mathcal{L}^2} \qquad (f \in \mathcal{L}^2_{\sigma}(\mathbb{R}^d))$$

for λ in some complex sector $\{z \in \mathbb{C} \setminus \{0\} : |\arg(z)| < \theta\}$. We describe how an analogue of such a resolvent estimate can be established in L^p by virtue of certain non-local Caccioppoli inequalities combined with an extrapolation argument of Shen. Such estimates build the foundation for many important functional analytic properties of these operators like maximal L^q -regularity and the boundedness of its H^∞ -calculus.

More precisely, we establish resolvent estimates in L^p for p satisfying

$$\left|\frac{1}{p} - \frac{1}{2}\right| < \frac{1}{d}.\tag{2}$$
 Eq: Interval

This resembles a well-known situation for elliptic systems in divergence form with L^{∞}-coefficients. Here, important estimates like Gaussian upper bounds for the semigroup cease to exist and the L^p-extrapolation has be concluded by other means. In particular, for elliptic systems one can establish resolvent bounds for numbers p that satisfy (2). Moreover, if $d \geq 3$, Davies constructed examples which show that corresponding resolvent bounds do not generally hold in L^p for numbers 1 that satisfy

$$\left|\frac{1}{p} - \frac{1}{2}\right| > \frac{1}{d}.$$

These elliptic results give an indication that the corresponding result for the Stokes operator with L^{∞} -coefficients is optimal.