Project 3 - Euler’'s Method

Due in class on Friday, 1 April 2010 in class. Please staple your
project!

These notes basically are from the IODE project and are a modification of those
written by P. Brinkmann. You are recommended to go to the Iode web site and click
on Course Materials. You will find a longer description of the project in Project I1
and Lab II: Numerical Methods.

1. AN INTRODUCTION TO NUMERICAL METHODS: COMMANDS IN MATLAB

In this project, you will implement your own numerical method that is a mod-
ification of the Euler method. In order to do this, you need to understand how
Matlab and Octave represent numerical solutions internally. The code in Figure
1 illustrates some of the main points, and you can type the code yourself at the
prompt in the command window of Matlab or Octave. (But you will need to quit
out of Tode before doing so, or else the plots might not show up correctly.)

The first command, tc = 0 : 0.2 : 1, creates a vector of t-values, ranging from 0
to 1 with step size 0.2. That is, it creates the vector (0,0.2,0.4,0.6,0.8,1).

The second command, xc = sin(pi*tc), creates a vector of z-values by evaluating
the function sin(wt) at all the entries of the vector tc.

The third command, plot(tc, xc), interprets tc as a list of coordinates on the
horizontal axis and xc as a list of corresponding coordinates on the vertical axis. It
plots all six points (¢, z) and connects adjacent points with straight line segments.
The resulting graph looks like a rough approximation of a part of a sine curve. We
can obtain a better picture by decreasing the step size: if you replace the first line
by t¢ = 0 : 0.05 : 1; and repeat the remaining two steps, then you will see a plot
that looks like a piece of the sine curve.

The last few commands in Figure 1 show how to access certain information about
the vector te, such as its length (that is, the number of entries) and the value of
the individual entries, numbered from one to six.

Figure 1: Representing and plotting functions with Matlab

>>tc=0:02:1

tc =
0.000000.200000.400000.600000.800001.00000
>> xc = sin(pi * tc)

xe =
0.000000.587790.951060.587790.00000
>> plot(tc, zc)

>> length(tc)

ans =6

>> tc(2)

ans = 0.20000

>> tc(3)

ans = 0.40000

Remember that there is a list of Matlab commands available on our course
website. You must always use this format when working on this project.

2. IMPLEMENTATION OF THE EULER METHOD IN IODE

Now we are ready to inspect Iode’s implementation of Euler’s method. Recall
that Euler’s method has the following components. We will use variables (¢,) and
the solutions will be x(t).

We want to numerically compute the solution to the initial value problem

.Z‘/(t) = f(t,l‘), .T(to) = Zo-

We begin at the point (o, o). Assuming a uniform step size h, we compute the
n*"-value of the approximation x,, from the previous point (¢,_1,,_1) by the Euler
update formula:

(21) Ty = Tp—1 + hf(tn—h xn_l).

After n-steps, we obtain (¢,,x,). This is supposed to be a good approximation of
the true solution z(t) at time ¢,: x(t,).

To explore how Iode computes z,,, use the Open menu item (click on ‘file’ and
then ‘open’ or in Matlab, open the Current Directory and click on the file euler.m)
in the Matlab main window (not the Iode window!) to open the file euler.m. The
file will open in an editor window. Don’t change this file in any way but read
through it. Figure 2 shows the contents of euler.m, without the comment lines
(which begin with a percentage sign). We’ll go through it line by line.

Figure 2: Matlab’s implementation of the Euler Method

1 function xc = euler(fs, z0,tc);
For each ¢ compute : 2 1z = z0;
3 xc=[x0];
4 fori=1: (lenght(tc) — 1)
h=tix1—t; 5 h=tc(i+1)—te(i);
k1 = f(ti,x;) 6 k1 =feval(fs,te(i),x);
Tiy1 =x; +h-ki, andthen 7 x=z4 hx*xkl,;
append z; 1 to the vector of values 8 xzc = [zc, z];
9 end;

)

(1) Line 1 defines a new function zc called euler. When this function is called,
it expects to receive three parameters as an input: 1) the parameter fs
represents the function f(¢,z) from our ODE (2.1), 2) the value 20 is the
initial z-value, and 3) tc is a vector of t-coordinates, like we have seen
before (in particular the first entry of tc is t0). Line 1 also indicates that
this function will return a value in the variable xc, which will turn out to
be the desired vector of z-coordinates computed by Euler’s method.

(2) Line 2 initializes the value of the variable z to be 0. The variable x always
contains our current numerical approximation.

3)

(4)

()

(6)

(7)
(®)

3

Line 3 creates the vector xc that will contain our numerical approximations.
Initially, it only contains the value z0. In particular, the first entry of xc is
20. So, we have tc(1) = t0 and zc¢(1) = z0.

Line 4 is the beginning of a loop that lets the variable i range over all
numbers from 1 to the length of the vector t¢c minus one. The body of this
loop, lines 58, constitutes the Euler update step and will be executed for
each value of 7.

Line 5 computes the step size h by computing the difference between the
(i + 1)t entry of tc and the i*" entry of tc. The expression tc(i) stands for
the i" entry of tc, which we regard as the current t-value. Now, the variable
x contains the numerical approximation of the solution at the current point
te(i).

Line 6 computes the slope of the solution at this point tc(i) by evaluating
the function given by fs at the point with coordinates tc(i) and xz. The
variable k1 contains the result of this slope computation.

Line 7 computes the Euler approximate solution value at the next point
te(i +1).

Line 8 appends this value to the vector of z-values, and thats it!

In Tode Project 3, when you write your own numerical routine for the Improved
Euler Method, you can keep the framework of euler.m. You only need to change
Line 1 in Figure 2, and then Lines 67 which compute the update formula.

3. LAB ProJECT 3: IMPROVED EULER METHOD

The improved Euler method is described by this improved update:

(3.1)

h = tiyi—t

ki = f(ti,z;)
ka = f(t;+ h,x; + hky)
Tit1 = x;+h(ks +ka)/2

Compare this line by line with the usual Euler method. We will now make a
module in Tode for implementing this method.

(1)
(2)

Explain the graphical meaning of the number k; and ks. Draw a diagram.
How is this scheme an improvement of the Euler method?

Implement the Improved Euler Method by adding a module to Iode that
computes solutions using this method. To do this, first OPEN the file
euler.m using the menu in the Matlab main window. Immediately save
this file under the new name impeuler.m by using the File — Save As
menu item. Now you are ready to edit this file impeuler.m Line 1 in Figure
2 should now read:

function xzc = impeuler(fs, x0,tc);

Do not use the extension notation .m here. Next, skip down to the end
of the file, ignore any comment lines. At the end you will see lines (6)-(7)
as in Figure 2 that describe the Euler update formula. Carefully modify
these lines to reflect the improved Euler update given in (3.1). Save your
work!

(3) Now test the new module impeuler.m. Start the direction fields module
of Tode and choose the solution method Other. When prompted for the
name of the module, enter impeuler (no .m). You will have to do this
each time you choose Other. Now Iode will use this module to compute
the solutions. Plot some solutions for ODEs where you already know the
answer, like f(¢t,2) = 2. You may have to debug the module if it does not
work. Make sure you use the correct syntax.

Now that your module is working, do the following. Quit out of the direction
field module of Tode and restart it to restore it to the default settings. We will
study three initial value problems:

(1)
(2)

'(t) =z, z(0) = —1.

o' (t) = zsin(t) + e~ <O z(0) = e L.
3)
2'(t) = e*sin(5t), z(0) = 0.8.

Relabel the variables in IODE so that ¢ is the independent variable and x is the
dependent variable.
WORK TO BE HANDED IN:

For each of these three ODEs, do the following and hand-in the plots and expla-
nations:

(1) For each solution method, Euler, your Improved Euler, and Runge-Kutta,
and for each of the three ODEs, plot the solutions with A = 0.1 and h = 0.5.
Try to explain the differences. You can experiment some more if you wish.
Use display parameters —3 <t < 3 and —3 < x < 3 for all plots. Be sure
to use the indicated initial conditions.

If you plot the solution curves for an ODE but obtained with different
methods on the same plot, use different colors so the three plots are clearly
distinguishable. On your print out, include the color code.

Choose a step size so that the Euler plot and the exact plot are roughly
the same. If all four plots look the same, your step size is too small.

(2) Plot the exact solution by first solving the initial value problem by hand
(turn this in with your work) and then using the Plot arbitrary function
command on the direction fields component of Iode. Use the same step size,
the same initial conditions, and the same display parameters.

(3) Comment on the different plots obtained by using different methods. Which
numerical method (Euler, Improved Euler, or Runge-Kutta) is the best?
Why?

