NAME: Solutions

1. (5 points). Find a solution of the initial value problem:

\[M(x, y) = xy^2 \]
\[N(x, y) = 4 + yx^2 \]

\[xy^2 + (4 + yx^2)y'(x) = 0, \quad y(0) = 1. \]

Solution for \(\psi(x, y) \):

\[\frac{2\psi}{dx} = M, \quad \frac{2\psi}{dy} = N \]

Yes. \(\Rightarrow \psi = \frac{1}{2} x^2 y^2 + h(y) \)

\[y = 4y + \frac{1}{2} y^2 x^2 + g(x) \]

We need \(h(y) = 4y \) and \(g(x) = 0 \).

Solve: \(y = C \)

\(y(0) = 1 \) \(\Rightarrow C = 4 \) so

\[y = 4y + \frac{1}{2} x^2 y^2 + x y^2 \]

√

2. (5 points). A tank holds 100 liters. A solution pours into the tank at a rate of 2 liters/sec and has a concentration of pollutant given by 0.01 grams/liter. The solution mixes uniformly in the tank and flows out at the same rate. If the tank initially contains pure water, find the amount of pollutant in the tank as a function of \(t \) in seconds. How much pollutant is in the tank after 50 sec?

\[\left\{ \begin{array}{l}
\frac{dQ}{dt} = \frac{2L}{5} \cdot 10^{-2} \frac{g}{L} - \frac{2L}{5} \cdot \frac{Q(t)}{100} \\
Q(t) = \text{amount of pollutant in the tank at time } t \text{ in grams.} \\
Q(t=0) = 0
\end{array} \right. \]

Solve:

\[\frac{dQ}{dt} + \frac{1}{50} Q(t) = \frac{1}{50} \]

\(p = \frac{1}{50}, \quad g = \frac{1}{50} \) integrating factor

\[M(t) = e^{t/50} \]

\[Q(t) e^{t/50} = \frac{1}{50} \int e^{t/50} dt = e^{t/50} + C \]

\[Q(t) = 1 + Ce^{-t/50} \]

\(Q(0) = 0 \) \(\Rightarrow C = -1 \)

\[Q(t) = 1 - e^{-t/50} \]

\(Q(50) = 1 - e^{-1} \)

Check: \(Q'(t) = \frac{1}{50} e^{-t/50} \)

\[Q' + \frac{1}{50} Q = \frac{1}{50} e^{-t/50} + \frac{1}{50} - \frac{1}{50} e^{-50} = 0 \]