1. Let \(\phi_j \) be an orthonormal basis of the Hilbert space \(L^2([a,b]) \). For any \(f \in L^2([a,b]) \), the mean square (MS) error between \(f \) and the finite series approximation \(S_N(x) = \sum_{j=1}^{N} c_j \phi_j(x) \) is defined by

\[
MS_N(f; \{c_j\}) \equiv \int_a^b |f(x) - S_N(x)|^2 \, dx.
\]

Assume that \(f \), the coefficients \(c_j \), and the basis functions \(\phi_j \) are all real (for simplicity). Show that \(MS(f; \{c_j\}) \) is minimized with the choice \(c_j = \int_a^b \phi_j(x) f(x) \, dx \), the expansion coefficients of \(f \) relative to the orthonormal basis \(\phi_j \).

2. Consider the nonhomogeneous BVP: \(y'' = x(x-2\pi) \) on \([0,\pi]\). Expand \(y \) in the eigenfunctions of the related Sturm-Liouville problem \(Ly = -y'' = \lambda y \) with DBC at 0 and \(\pi \). Expand \(h(x) = x(x-2\pi) \) in the eigenfunctions of this Sturm-Liouville problem. Find a formal series solution for \(y \).

3. Find the Fourier series for a square wave:

\[
f(x) = \begin{cases}
 \frac{h}{2} & 0 < x < \pi \\
 -\frac{h}{2} & -\pi < x < 0
\end{cases}
\]

What is the value of the series at \(x = -\pi, 0, \pi \)? Is this reasonable?