1. Show that the delta function satisfies the following identity. Let g be a differentiable function with exactly one zero in $[a, b]$ at x_0 and so that $g'(x_0) \neq 0$. Then for any nice test function f:

$$\int_a^b f(x) \delta[g(x)] \, dx = \frac{f(x_0)}{|g'(x_0)|}.$$

First assume $g(a) < g(b)$ and then show the other case follows by changing the order of the endpoints.

2. Compute the Fourier transform of the function

$$f(x) = \begin{cases}
0 & x < 0 \\
A e^{-\alpha x} & x \geq 0
\end{cases}$$

for nonzero constants A and $\alpha > 0$.

3. Derivative of a delta function. For a test function f in one dimension, formally show that

$$\int_{-\infty}^{\infty} \delta'(x - x_0) f(x) \, dx = -f'(x_0).$$

4. Compute the Fourier transform of the $1s$ state of the hydrogen atom:

$$\psi(x) = C_0 e^{-\alpha \|x\|},$$

for $x \in \mathbb{R}^3$ and where C_0 and $\alpha > 0$ are positive constants. It is convenient to use the integration method:

$$\int e^{-\alpha r} r^2 \, dr = \frac{d^2}{d\alpha^2} \int e^{-\alpha r} \, dr,$$

and problem 2.