Math/Physics 506
Some Ideas of Linear Algebra, Part I:

Linear Independence, Span, and Basis

P. A. Perry

A vector space is a set of objects (“vectors”) which can be added to each other

and multiplied by scalars. The operations of addition and scalar multiplication obey

the same rules that hold for vectors in two- and three-dimensional space. Examples

include

o

The two-dimensional space of vectors of the form z,1+ z,j where z, and z, are

real numbers. We can also write such vectors as pairs (1, 23).

The three-dimensional space of vectors of the forn z;1+z,j+ 23k where z;, 24,

and z3 are real numbers. We can also write such vectors as triples (xy, z,, z3)-

The n-dimensional space of vectors of the form (z,zs,--+,x,) where z;, 3,
etc., are all real numbers. Mathematicians sometimes call this vector space
R If = (21,--+,2,) and y = (y1,-- -, Yn), the vector sum of z and y is the
vector z +y = (@ + Y1, 22 + Y2, -, T + yn). If A is a real number, the scalar

multiple Az is the vector (Azy,---,Az,).

The space of solutions to certain differential equations. Consider, for exam-
ple, the differential equation y” + y = 0. Two independent solutions of this
differential equation are given by y;(z) = cos(z) and y,(r) = sin(z). Any
solution y(z) is a combination y(z) = ayi(z) + c2y2(z) of these two special
solutions. In the language of vector spaces, we can say that the set of all
solutions to this differential equation is a two-dimensional vector space: the
“vector” y(z) = c1y1(z) + c2y2(z) can be represented by the “coordinates” ¢;

and c,.

“Spaces” of functions. Consider the set of all (continuous) functions on the

interval [0,1] = {« : 0 < z < 1}. Think of a function f as a “vector” with
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infinitely many components f(z), one for each z € [0, 1]. If f and g are any
two functions in this space, the new function b = f + g is just the “vector
sum” h(r) = f(z) 4 g(z), and the “scalar multiple” Af is just the function
w(x) = Af(r). Thus, the set of continuous functions on [0,1] is also a vector

space (any other interval will also work—there is nothing special about [0,1]).

Examples 4 and 5 suggest that ideas of linear algebra have application to many other
situations besides vectors in two- and three-dimensional space. We will see how true
this is when we study ordinary and partial differential equations in Math/Physics
507!

A set of vectors Xj,---,Xn is called linearly independent if no one of the
vectors can be expressed as a linear combination of the others. The basis vectors i,
J and k in three-dimensional sﬁace are linearly independent; the solutions y;(z) and
y2(z) in the differential equation of Example 4 are also linearly independent.

A set of vectors x,,- -, X, spans a vector space if any vector in that space can
be expressed as a linear combination of x;,- - -, X,,. For example the i and J vectors
span two-dimensional space, and the vectors y; and y2 in Example 4 span the vector
space of solutions to the differential equation y” + y = 0. On the other hand, the
vectors i, j, and i+ j span two-dimensional space, but there are “too many” vectors
in this set. The reason is that the third vector can be expressed as a sum of the first
two, so this set of three vectors is not linearly independent.

A basis for a vector space is a set of linearly independent vectors that spans
the space. Thus the vectors i, j, and k are a basis for three dimensional vector
space. It turns out that the vectors e; = (1,0,---,0), e, = (0,1,0,---,0), ---,
e, = (0,0,---,0,1) are a basis for the vector space R" referred to in example 3 above.
Finally, to give another “differential equations” example, the space of solutions to
the differential equation y” — y = 0 (note the change in sign from Example 4) is
spanned by the solutions y;(z) = €* and yy(z) = €~%; it is also spanned by the
solutions z;(x) = cosh(z) and z,(z) = sinh(z). The dimension of a basis is the
number of vectors in it. A basic fact about bases of vector spaces is

Theorem All bases of a given vector space have the same dimension.
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The dimension of a vector space is the number of vectors in a basis. If V is
an n-dimensional vector space and e;,---,e, is a basis for V, any vector x can be

written in exactly one way as
X=me + -+ ae,.

The numbers ¢4, - - -, a, are the coordinates of x with respect to the basis e;,-- -, e,.

Here are some examples relating to bases and coordinates:

1. The usual basis for two-dimensional vector space is the vectors 1 and bf j.
Another one consists of the vectors e; =i+ j and the vectors e2 =1 —j. The
vector x = 4i + 2 is also given by x = 3e; + e;. Thus the coordinates of x
with respect to 1 and j are (4, 2) while the coordinates of x with respect to e;

and e; are (3,1).

X

The two-dimensional space of solutions to y” — y = 0 has basis y;(z) = €* and
y2(x) = e~%. The vector y satisfying y(0) = 1, y’(0) = 0 is expressed uniquely
as y(x) = 3y1(z) + 3v2(z). In the basis 21(z) = cosh(z), z2(z) = sinh(z), this
same vector is expressed as y(z) = z(z) (recall cosh(z) = ijé—e—-j!) Thus
the coordinates of y with respect to the first basis are (1/2,1/2), while the

coordinates of y with respect to the second basis are (1,0).



Math/Physics 506
Some Ideas of Linear Algebra, Part II:
Inner Products (Dot Products) and Orthogonality

An inner product space is a vector space with an inner product (sometimes

called a dot product or scalar product). Here are some examples:

1. (Real three dimensional vector space) If x = (z1,%2,23) and y = (y1,¥2,¥3),
then the dot product is

X-y=z1y + z2y2 + 3Y3.

2. (real n-dimensional real vector space, R*) If x = (z1,--+,z,) and y = (y1,-- -, Yn),

then the inner product x -y or (x,y) or (x | y), is

(X,¥)=z1y1 + z2y2 + - + Zp Ym.

3. (complez n-dimensional vector space, C") Vectors in this space are n-tuples
of complex numbers. Let z = (21,---,2,) and W = (wy, - -- ,Wn). The inner

product of z and w, denoted (z,w) or (z | w), is
(Z,W) =Zi1w +Zawa + - + Zp Wp.
Here the bar means complex conjugation.

4. (function spaces) If f and g are functions of one variable defined for 0 < ¢t < 2,

for example, the “inner product” of f and g is

(f.9)= /0 2’r'f_(t_) g(t) dt.

The bar over f(t) means that we take its complex conjugate, if it is a complex-
valued function like e (in which case e® = e~*. This inner product is especially

important for the study of Fourier series, as we will see.
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Inner products are useful because they allow us to introduce “geometric” notions

like length and orthogona.lify. The length of a vector x in an inner product space

is defined by
x| = y/(x,x)

where (x,y) is the inner product appropriate to that space. Returning to the above

examples:
1. The length of x = (1, z,, z3) is given by

x| = /(x,%) = \/z? + 2 + 3.

2. The length of x = (21,22, -,2n) is

x| = \/(x,x) = /a2 + 2} + - + a2

3. The length of 2 = (21,22, --,2,) is

2| = \/(2,2) = /|22 + 222 + - - - + |2a]2.

Note that we take the modulus squared of each complex component z;.

4. The “length” of a function f(t) defined for 0 < ¢ < 2r is

A=y [ e

Note in this case we use double bars for length since |f| means the absolute

value or modulus of f, which is something different.

Notice that, in any example, a vector can have length zero if and only if it is the
zero vector. (A function with “length” zero satisfies [ |f(2)|? dt = 0, which can only
happen if f(t) = 0 for every t).

Two vectors v and w are orthogonal if (v,w) = 0. In three-dimensional space,
this implies that the two vectors are perpendicular. In the other spaces, we define
orthogonality using the inner product, but still keep the picture in mind of perpen-

dicular vectors in three-dimensional space. Here are some examples to check:
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. The vectors (—1,0,1) and (0, 1,0) in three-dimensional space are orthogonal.
The vectors (1,1,---,1) (all 1’s in every entry) and (—1,1,0,---,0) in real
n-dimensional vector space are orthogonal.

The vectors (3,1) and (¢, —1) in complex two-dimensional space are orthogonal
(be careful about taking complex conjugates!)
The functions cos(t) and sin(t) defined for 0 < ¢ < 27 are orthogonal: inother-
words, their inner product
2
/ cos(t) sin(t) dt
0
18 zero.

Now that we know what length and orthogonality are, we can talk about orthonormal

sets of vectors. These are vectors which, like the i, j, and k vectors in real three-

dimensional space, have unit length and are mutually perpendicular. More precisely,

a set of vectors vy, - -, v, is an orthonormal set if (v;, v;) equals 0 if i # 7, and 1

if 2 = j. Here are some examples for each of our vector spaces.

1.

2.

The vectors i, j, k in three-dimensional space.
The vectors e; = (1,0,---,0), e = (0,1,0,---,0), ---, &; = (0,0,---,1,---,0)
(the 1 is in the #th slot), -, e, = (0,0,---,0,1) in real n-dimensional vector

space.
The same set of vectors in complex n-dimensional vector space.

The functions ¢,(t) = 712-;8""‘ for 0 <t < 27, where n = 0,1,2,---. Inother-
words, the “inner product”

1 eint 1
(¢m¢m)= b \/— \/—

is zero if n # m, and 1 if n = m (note: the reason for the — sign in e~™* is the

tmt dt

complex conjugation in the inner product). This set of orthonormal “vectors”

is very important in the theory of Fourier series.
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An orthonormal basis for a vector space is a basis of orthonormal vectors. In
fact, in all of the examples of orthonormal sets just given (including the last one
about functions!), the sets are really orthonormal bases for the corresponding vector
spaces.

An important technique you should know is the Gram-Schmidt Orthonor-
malization Process. It is a recipe for taking a set of linearly independent vectors
(remember part I!), and manufacturing a set of orthonormal vectors spanning the
same space. Before we describe it, it is important to note the following recipe for
computing the component of a given vector, say w, in the direction of a unit vector u:
it is (u, w)u, since (u, w) gives the right magnitude and u gives the right direction.
We can check this to be true for real three-dimensional vector space, and we define
it to be true for the other vector spaces!

Here’s how the Gram-Schmidt process works. Suppose I’'m given a set of vectors
Vi1,V2,--+,Vy which are all linearly independent; that is, no one vector is a linear
combination of any of the others. I manufacture a set of orthonormal vectors u;, u,,
-+, Up from these as follows:

Step 1 Let u; = vy /|vi|. This is easy.

Step 2 Compute wy = v, — (u1,vz)u;. This is v; with the component parallel
to u; taken out. The only trouble with w; is that it isn’t necessa.rily normalized, so
we let u; = wy/|w,|.

Step 1 Compute
w; = v; — (g, vi)ug — - -+ — (Wig, ViU

That is, take out all of the components of v; in the u; through u,_; directions.
Luckily we have already computed u; through u;_;! As in step 2, we normalize to
make u; = w,/|w,!

We continue in the same way until we reach Step n and we are done.



Here are some exercises involving the Gram-Schmidt method.

1. Find a set of orthonormal vectors that span the plane containing the vectors
(1,0,1) and (1,1,0).

2. Consider the polynomials wo(t) = 1, vi(t) = ¢, and v,(t) = #2, as “vectors”

defined for —~1 <t < 1. Define an inner product on these vectors by

(v,0) = [ 11 o(t)w(t) dt.

Find the corresponding orthonormal vectors uo(t), u1(t), uz(t). Up to normal-
ization, these are actually the first three Legendre polynomials, important in

the theory of Laplace’s equation with cylindrical symmetry.
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Some Ideas of Linear Algebra, Part III:

Matrices and Linear Transformations

An m X n matrix A is an array of numbers

a1 G122 +*+ Qin
Q21 4G22 - Q2
Qm1 Am2 *** Qmn

The numbers a;; are called the entries or matrix elements of A. It is customary
to denote a matrix by a capital letter, like C, and its entries by the corresponding
lower case letter, like ¢;;. An equation like C = {c;;} means that C is the matrix
whose entries are the numbers ¢;;. Two matrices A and B, both m X n, can be added
give a new matrix C = A + B, where ¢;; = a;; + b;;. If Ais an m X r matrix and B
is an r X n matrix, the m X n matrix C = AB is defined by the equation
r
cij = D Gikb;.
k=1
A linear transformation is a map T between vector spaces that obeys the

following rules:
(a) For any two vectors x and y, T(x +y) = T(x) + T(y)
(b) For any vector x and any scalar A, T(Ax) = AT(x).

We sometimes write Tx for T(x).



Here are some examples of linear transformations:

1. (A linear transformation on three-dimensional vector space) The map

Ty 3.’31 - 2272
zy3 | — | x4+ 5z3
I3 T2 — I3

is a linear transformation that takes vectors in R? to vectors in R3. Of course,

one can write this transformation using matrix multiplication as

2 3 -2 0\ /=
Ty [ d 1 0 5 To
T3 0 1 -1 I3

or T'(x) = Ax where A is the 3 X 3 matrix above.

2. (Linear transformations from R" to R™) If A is any m x n matrix whose entries

a;; are all real numbers, the formula
T(x) = Ax

defines a linear transformation which maps a vector x € R" into a vector

Ax € R™. To be more explicit, if we let y = T'x and y = (y1,--,¥»), then

n
Yy = Z a;ja:j.
i=1

3. (Linear transformations from C™ into C™) If A is an m X n matrix whose

entries a;; are complex numbers, the formula
T(z) = Az

defines a linear transformation which maps a vector z € C™ into a vector

Az € C™. If w = T'(2z), then we have the formula

n
w; = Z aij2;.
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4. (A linear transformation on function space) Let’s consider, for the sake of
concreteness, continuous functions f(¢) defined for 0 <t < 1. Let K(t,3) be a
function defined for 0 < s,¢ < 1. Observe that if f(¢) is a “vector” with one
component f(t) for each value of ¢, so K(t,s) is a “matrix” with one “entry”

for each value of ¢,s. The formula

(TF)(e) = [ K(t,s)f(s)ds

defines a linear transformation on functions! Let’s check the definition above.

If f and g are any two functions, and A is any scalar, we have

T(F+9)®) = [ K(t,9)(f(s)+9())ds
= [ " K(t,9)f(s)ds + i " K(t,3)g(s)ds
= Tf(t)+Ty(2)

and

TONW = | " K(t,3) Af(s) ds
= /\/olK(t,s)f(s)ds
= ATA()

Linear operators like this are called integral operators and play an important
role in the Sturm-Liouville theory of ordinary differential equations which we

will study next term.

These example deserve some comment. First of all, notice the similarity between

the formula in Example 2,
Y = Z a;;T;
Jj=1

and the formula in Example 4,

TS(0)= [ K(t,9) f(s) ds.



.

In the second, the summation over j = 1,---,n (summation over components of X)
is replaced by integration over s from 0 to 1 (integration over “components” f(s)
of f), and the matrix a;; is replaced by the function K (¢,s), sometimes called the
integral kernel of the operator 7. In a very real sense, integral operators are to
functions what matrices are to vectors. We will return to this point later. '

Secondly, the above examples suggest that there is a close connection between
linear transformations and matrices (or, in the case of Example 4, integral kernels). In
fact, every linear transformation on vectors can be represented by a matrix, and there
is a simple way of finding it. First, let’s consider the case of linear transformations
T acting from R" to R™. How can we find the matrix A that represents 7'7 That
is, how can we find the matrix elements a;;?

Before we give the answer, we need a little bit of notation. For real n-dimensional
vector space R", let e,,---, e, be basis vectors where e; is a vector with ith compo-
nent 1 and all other components zero. This basis is sometimes called the standard
basis or the usual basis for the vector space R”. In R3, for example, the basis e,
€, €3 is just the vectors 1, j, k by a different name.

Suppose we now have a linear transformation T that takes vectors from R™ into

R™. Any vector x € R" can be expressed in the form

X =2z1€) + 23+ ---+ 1€, (1)

and Ly the Hnear;ty o T,
T(x) = z1T(e1) + z2T(e2) + - - - + z,.T(ey).

Thus, we can compute T'(x) for any x if we just compute T'(e;) for all of the vectors

e; in the standard basis for R*. Each T'(e;) is a vector in R™, so we can write, for

some numbers g;;,t =1,---,m,
T(e;) = a1je1 + -+ + amje€m- (2)
(remember ey,---, ey, is the standard basis for R™). Then, putting together all of



these calculations, we get

i=1 \j=1

T(x) = zm: (i a,-j:cj) €. (3)

That is, the matriz A = {a;;} is the matriz of the linear transformation T'.
There is a more ‘user-friendly’ formula for the matrix elements a;;, and it relates

to inner products. Observe that the component of T'x in the e; direction is
(e: | Tx);
setting x = e; and using equation (3) to compute T'x, we find that
- a;; = (e; | Te;).

Thus the ij-th entry of the matriz A is just the inner product of e; with Te;. One

sometimes sees the notation

(e | T'| e;)

for this inner product.

As we will see later, it is sometimes useful to use a basis other than the standard
one to analyze a linear transformation. In the meantime, it is important to realize
that the matriz of a linear transformation is always computed with reference to a
specific choice of basis for the domain and the range. To illustrate this idea, suppose
that 7' is a linear transformation from R"™ to R™, and suppose we choose basis
vectors vi,- -, Vv, for R* and wy,---,w,, for R™. Then the matrix elements of T

with respect to these two bases are
a;; = (wi | Tv;).

Thus if

X=1'1V1+"'+$nvn,

then y = T'x is given by
Y=y1Wi1+- -+ YnWn



product on functions as symmetric and Hermitian matrices have to the inner product

on vectors? Recall that the inner product on functions is
1
(F19) = [ Fyg(e)at
if the functions are real-valued, and

(F19) = [ T@ae)at

if the functions are complex-valued. If T is a symmetric integral operator, then

(Tf Ig)1= .
- /0 ( /0 K(t,s)f(s)ds) g(t)dt

-/ ') ( / " K(2,9)g(t) dt) ds

_ /01 ) ( /OIK(s,t)g(t)dt) ds
= (f|Tg),

so a symmetric integral operator really does behave just like a symmetric matrix. You
should compare this calculation with the one that appears on page 7 for symmetric

matrices; note that the steps correspond exactly!
You should prove to yourself that if T is a Hermitian integral operator and f and

g are complex-valued functions, the same result holds.
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Some Ideas of Linear Algebra, Part IV:

Eigenvalues and Eigenvectors

Some Facts about Eigenvectors

Recall that an eigenvector of an n X n matrix A is a vector x that satisfies the

equation

Ax = Ax

for some scalar A, which is called an eigenvalue of the matrix A. In general, A may
be a complex number, even if the matrix elements of A are all real. Geometrically, an
eigenvector gives a direction in space in which the linear transformation associated
to the matrix A “stretches” vectors by the factor A. In a moment, we will show how
to use determinants to find eigenvalues and eigenvectors. First consider the following

example: let A be the matrix

(2 10
A=]1 -2 0
0 01

Let T be the linear transformation in three-dimensional vector space with matrix A

with respect to the 1, j, k basis. It is not difficult to see that the vectors

e = i+j

e; = 1 "j
ez = k
are eigenvectors of A4; in fact,
T(e1) = 381
T(es) = e
T(e3) = e3.



Thus, if we use e, e;, and e; as a basis for three-dimensional vector space, the
matrix of T with respect to this new basis, 4’, is very simple:
3 00
A=1010
0 01
Along the ey, e,, and e3 axes, T “stretches” vectors by a fixed amount. These axes
are sometimes called the principle axes of the linear transformation 7.

In this case, ey, e;, and e; are a set of orthonormal vectors that form a basis for
three-dimensional vector space. The reason is that the original matrix A is symmet-
ric. In fact, symmetric and Hermitian matrices always have a complete set
of orthonormal eigenvectors.

We now want to understand why this is true. To save us some work, notice
that any symmetric matrix with real matrix elements is necessarily Hermitian (think
about this!), so anything we find out about Hermitian matrices will also be true
about symmetric matrices. Henceforth, we’ll consider Hermitian matrices only.

First, let’s do something easy. Suppose that A is a Hermitian matrix (so its
entries may be complex, and its eigenvectors may be complex as well). Let’s suppose
that we are given eigenvectors, z and w, of A, with eigenvalues A and u. What
can we find out about these eigenvalues and eigenvectors using the fact that A4 is
Hermitian? We can easily deduce

Fact 1 The eigenvalues must be real. To see this, note that

(Az |z) = (z| Az)
~ (2] 42)
= (Az|z)
= (z]2)
= Az |z)

which implies that A = A. Hence A is real.

Fact 2 Eigenvectors belonging to different eigenvalues are orthogonal. Again, we



simply calculate:
(z| Aw) = Xz |w)
= (Az]|w)
= uiz|w)

(remember that the eigenvalues are real, so = p), from which we get the equation

(A—p)z|w)=0

which can be true only if either A = p or (z | w) = 0.

It follows that, if we can find enough eigenvectors to make a basis, we can make
them an orthogonal basis, just as in the example above. This is because the ones
corresponding to different eigenvalues are “automatically” orthogonal, and we can
make the ones corresponding to the same eigenvalue we can orthogonalize using the
Gram-Schmidt Process. But how to we find eigenvectors of a given matrix in the

first place? And, how do we know that we can find “enough” to make a basis?

How to Find Eigenvectors

Recall that, if A is an » X n matrix, the equation AX = 0 has a nonzero solution if
and only if the determinant of A is zero. (If the determinant of A is nonzero, then
A is invertible so that the only possible solution is x = A~'0 = 0.) This simple
observation will help us find the eigenvalues and eigenvectors of n X n matrices,
whether Hermitian or not.

Rewrite the eigenvalue equation
Ax = Ax

in the form
(A-2ADx =0.

Here I means the n x n identity matrix whose matrix elements are 0 if 7 # j and

1 if 2 = 7. This equation has a nonzero vector x as a solution if, and only if,
det(A — AI) = 0.
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This equation is called the characteristic equation for the matrix A. The function

det(A—AJ)is a function of A called the characteristic polynomial. Here are some

examples.

1. Let
13
a(13)
The characteristic polynomial of Ais (1 - 2A)(3— 1)~ 6 and, simplifying, the

characteristic equation is A—3X1—3 = 0. Notice that this equation has complex

21
- (21)
The characteristic polynomial is (2—2)*—-1=0and, simplifying, the charac-
teristic equation is A? —4) + 3 = 0. Its roots are A =1 and ) = 3.

1 03
A=106 0].
3 01

Notice that A4 is a symmetric (hence Hermitian) matrix. The characteristic
polynomial for 4 is (6 — A)[(1 — )2 — 9] so the characteristic equation is (6 -
A(A+2)(A—-4)=0.

roots!

2. Let

3. Let

The eigenvalues are roots of the characteristic equation. Given an eigenvalue,
how do we find eigenvectors? We must solve the linear equation (A= AIx=0. We

will take this up in the next set of notes.
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Some Ideas of Linear Algebra, Part V:

Diagonalization of Matrices, Special Matrices

First, let’s recall some of the notions that have been introduced already, and state
some results about diagonalization of matrices.
For any n X n matrix, the eigenvalues of A are the roots of the equation (in.the
variable )
det(A — AI) = 0.

A vector x is called an eigenvector of A if Ax = Ax for some scalar A.
If we can find a linearly independent set of eigenvectors vi,---, v, with eigen-

values Aj,---,An, then we can diagonalize the matrix A as follows. Let S be the

n X n matrix whose columns are the eigenvectors vy, -- -, vy, and let A be a diagonal
matrix with diagonal entries Ay, -+, A,. Then
A=8AS5"
and
A =S1AS.
To understand these two equations, recall that S is a change-of-basis matrix. That
is, if a given vector x has coordinates (zi,-- -, zn) with respect to the usual basis of
R", and (z},- -, z!) with respect to the basis v,,---,v, of R", then
T z)
: =5 :
Zy z)

Thus A and A are the same linear transformation represented in two different bases.
Notice that, for a general square matrix A, there is no guarantee that we can find
a basis of eigenvectors. There are some special kinds of matrices for which this. is

guaranteed.



1. A symmetric matrix is a matrix A such that A = A7, i.e., A is its own
transpose. The eigenvalues of a symmetric matrix with real matrix elements
are always real, and we can find a complete set of orthonormal eigenvectors. If
S is the matrix whose columns are the orthonormal eigenvectors, then S is an

orthogonal matrix; that is, STS = I, where I is the identity matrix.

2. A Hermitian matrix is a matrix A such that A = A!, ie., A is its own
Hermitian conjugate. The eigenvalues of a Hermitian matrix are always real,
and such a matrix has a complete set of eigenvectors which are orthogonal in
the inner product on the complez vector space C™. If U is the matrix whose
columns are the orthonormal eigenvectors of A, then U is a unitary matrix:

that is, UTU = I, where I is the identity matrix.

It is worth pointing out that orthogonal matrices have a special connection to the
inner product on R", and unitary matrices have a special connection to the inner

product on C™. To discuss this special connection, we first note two simple identities.

1. If x and y are any two vectors in R®, and A is any n X n matrix with real

matrix elements, then

(Ax | y) = (x| ATy). (1)

2. If z and w are any two vectors in C®, and A is any n x n matrix with complex
matrix elements, then

(Az | w) = (z | Alw). (2)
What is so special about orthogonal and unitary matrices?
1. A matrix § with real entries is orthogonal if, and only if
(x| y) = (5x | Sy) (3)

for any two vectors x and y in R™. Inotherwords, S preserves lengths of vectors
and the angles between them. Therefore, orthogonal matrix is “essentially” a

rotation of coordinates in real vector space.
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2. A matrix U with complex entries is unitary if, and only if,
(z | w) = (Uz | Uw) (4)

for any two vectors z and w in C™. Inotherwords, U preserves “lengths” and
“angles” for complex vectors. Therefore, a unitary matrix is “essentially” a

rotation of coordinates in complex vector space.

To see why equation (3) is true for a matrix with STS = I, use equation (1):

(Sx|Sy) = (x]|S57Sy)
= (x|y)

since STS =1.

To see why equation (4) is true for a matrix with UtU = I, use equation (2):

(Uz |Uw) = (z|UUw)

= (z|w)

since UtU = I.

Thus, symmetric matrices can be diagonalized by a rotation of axes in
R", and Hermitian matrices can be diagonalized by a rotation of axes in
Cn.

What about matrices that aren’t symmetric or Hermitian? Here the story is a
bit more complicated. Eigenvalues may be complex, and eigenvectors need not be

orthogonal. Moreover, as the following simple example shows, there might not even

-(33)

Then A has characteristic equation A? = 0 so A = 0. However, the only solutions to

(£)(2)-(2)

be a complete set of eigenvectors.

Let

the eigenvalue equation



are all multiples of the vector (1,0). This is a one-dimensional subspace of R?! In
this case we complete the basis by looking for generalized eigenvectors which
solve the equation (4 — AI)?x = 0. Since A? = 0, the zero matrix, this equation has
plenty of solutions! In particular, the vector space R? is spanned by the eigenv_ector
(0,1) and the generalized eigenvector (1, 0).

For a general matrix A with real entries, there is a basis of R® consisting of
eigenvectors and generalized eigenvectors. We won’t discuss this general case except

in some specific examples.



