MA575 Solutions to PS 8

pg 104

1. a) \(f: \mathbb{R} \to \mathbb{R} \) and \(|f(x)| \leq x^2 \). Then \(f \) is diff. at \(x = 0 \).

 Pf. For \(x \neq 0 \),
 \[
 \left| \frac{f(x) - f(0)}{x} \right| = \left| \frac{f(x)}{x} \right| \leq |x| \text{ as the bound,}
 \]
 implies \(f(0) = 0 \). Thus \(\lim_{x \to 0} \frac{f(x) - f(0)}{x} = 0 \) and \(f'(0) = 0 \).

 b) Construct \(f: \mathbb{R} \to \mathbb{R} \) the 0 is differentiable at \(x = 0 \). By (a) it suffice to take \(|f(x)| \leq x^2 \) \(\forall x \). Define
 \[
 f(x) = \begin{cases}
 x^2 & x \in \mathbb{Q} \\
 0 & x \in \mathbb{R}\backslash\mathbb{Q}
 \end{cases}
 \]
 Then \(f \) is diff. at \(x = 0 \). Suppose \(f \) is cont. at \(x_0 \neq 0 \) (it is cont. at \(x_0 = 0 \)) then \(\forall \varepsilon > 0 \) \(\exists \delta > 0 \) s.t. \(|y - x_0| < \delta \Rightarrow |f(y) - f(x_0)| < \varepsilon \).

 Take \(\varepsilon < x_0^2 \).

 Then \(f(y) - f(x_0) < \varepsilon \).

 Choose any \(y \in B(x_0, \delta) \setminus \{x_0\} \), \(y \notin \mathbb{Q} \) (always possible by density of \(\mathbb{Q} \) in \(\mathbb{R} \)) then \(f(y) = 0 \) and \(x_0^2 \leq \varepsilon \), but \(\varepsilon < x_0^2 \) so we get a contradiction so \(f \) is not cont. at any point \(x_0 \neq 0 \).

6. Suppose \(f: [a, b] \to \mathbb{R} \) diff. on \((a, b) \) and \(c \) is such that \(f'(a) < c < f'(b) \) (\(f'(a) \) e \(f'(b) \) are defined as the right & left limits of the difference quotient, resp.). Then \(\exists x \in (a, b) \) s.t. \(f'(x) = c \).

 Pf. Set \(g(x) = (x - f(x)) \). Then \(g'(a) > 0 \), so \(g \) is incr. for \(x \) near \(a \) & \(g'(b) < 0 \) so \(g \) is decr. for \(x \leq b \). In particular, \(g \) isn't constant. Since \(g \) is cont. on \([a, b] \) \(\exists x_0 \in (a, b) \) where \(g(x_0) \) is a max \(\Rightarrow g'(x_0) = 0 \), so \(c = f'(x_0) \). The max can't take place at \(x = a \) since \(f(x) > f(a) \) for \(x > a \) nor can it take place at \(x = b \) since \(f(x) > f(b) \) for \(x < b \).)

pg 112 1a) \(f: [a, b] \to \mathbb{R} \) cont. \(\exists \int (f(x) \leq \int (b) \). \)

 Pf. Let \(m = \min f(x) \) & \(M = \max f(x) \) so \(m \leq \int f(x) \leq M \). If \(m = f(x_1) \) & \(M = f(x_2) \) for \(x_1, x_2 \in [a, b] \) then by
the Intermediate Value Thm 8.9) either \(\exists x \) between \(x_1 \& x_2 \)
\[\text{s.t. } f(x_0) = \int_a^{b} f \quad \text{or} \quad f(x_0)(b-a) = \int_a^{b} f = m = M = f \]
is const. In this case \((b-a)f(x) = \int_a^{b} f \) by construction.

3. \(f \) cont. \(\geq 0 \) on \([a,b] \) \((a+b) \) and \(f(b) = 0 \). Then \(f = 0 \) on \([a,b] \).

pf Suppose \(\int_a^{b} f > 0 \) but \(f \) isn't identically zero. Then \(\max f(x) \geq \frac{f(b)}{2} \) and positive. \(\exists \epsilon > 0 \) s.t. \(\forall x \in [x_0 - \epsilon, x_0 + \epsilon] \), \(f(x) > f(x_0)/2 \) (if \(x_0 \) is an endpoint take \([a, a + \epsilon] \) or \([b - \epsilon, b] \), resp.) - (claim: \(0 < f(x_0)\epsilon < \int_a^{b} f \)) giving a contradiction. (Use Prop. 8.19)

\[\int_a^{b} f = \int_{x_0 - \epsilon/2}^{x_0 + \epsilon/2} f \]

Note: the continuity of \(f \) is essential - see #4.

4. Let \(g : [0,1] \to \mathbb{R} \) be defined by \(g(x) = \begin{cases} \frac{1}{n} & x = \frac{1}{n}, n \in \mathbb{N}, \text{ or otherwise} \\ 0 & \text{otherwise} \end{cases} \)

then \(g \in \mathcal{R}([0,1]) \) and \(\int_{0}^{1} g = 0 \) (\(g \) isn't cont. of course).

pf Basic fact: \(f : [0,1] \to \mathbb{R} \) \(f(x) = \begin{cases} 1 & x = \frac{1}{n} \\ 0 & \text{other} \end{cases} \)

then \(f \in \mathcal{R}([0,1]) \) \& \(\int_{0}^{1} f = 0 \).

This extends to finitely many points. Given \(\epsilon > 0 \) take \(N \) s.t. \(\frac{1}{N} < \frac{\epsilon}{2} \). Let \(P_{\epsilon} = \left\{ \left[\frac{1}{N} \right], \cdots, \left[\frac{N-1}{N} \right] \right\} \). \(U(f, P_{\epsilon}) < \frac{\epsilon}{2} \), which

\(U(f, P_{\epsilon}) = \text{since there are finitely many jump discontinuities} \)

pf Define \(P'_{\epsilon} = P_{\epsilon} \cup \left\{ 0, \frac{1}{N} \right\} \) so \(U(f, P'_{\epsilon}) = U(f, P_{\epsilon}) + \frac{1}{N} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \) (note \(L(f, P) = 0 \) for all partitions \(P \))

\(\Rightarrow \int_{0}^{1} f \) exists. It also follows that \(\epsilon \left| \int_{0}^{N} f \right| < \epsilon \Leftrightarrow \int_{0}^{N} f = 0 \).