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1 Introduction

These notes review some basic ideas of di¤erential calculus and de�ne the no-
tion of a regular submanifold of Rn. Sources include chapters two and 5.1
of Michael Spivak�s (strongly recommended) book, Calculus on Manifolds: A
Modern Approach to Classical Theorems of Advanced Calculus and chapter 3 of
Manfredo do Carmo�s book Di¤erential Forms and Applications. These notes
draw freely on both of these texts (some proofs are taken almost verbatim from
the references), and the reader is strongly urged to go to the originals for a
more thoroughgoing treatment of these ideas! I�ve titled these notes Chapter
-1 because they logically precede Chapter 0 of do Carmo�s book Riemannian
Geometry which is the primary text for this course.
If f is a mapping from an open subset U of Rn to Rm, we�ll write f : U �

Rn ! Rm. We�ll also write

f(x) = (f1(x); f2(x); � � � ; fm(x))

where fi, 1 � i � m, are the component functions of f and fi : U � Rn ! R.
We�ll denote by @fi=@xj , or sometimes Djfi, the partial derivative of the ith
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component function with respect to the jth independent variable:

(Djfi) (x) = lim
h!0

fi(x+ hej)� f(x)
h

:

We�ll denote by I the identity matrix (acting on Rk where k is understood in
context) and by Id the identity function acting from Rn to itself. The notation
hv; wi denotes the inner (dot) product of vectors v and w belonging to Rn. If
a 2 Rn and b 2 Rm, then (a; b) denotes the corresponding element of Rn �Rm.
Finally, if A : Rm ! Rp and B : Rn ! Rm, A �B denotes the composition of the
linear maps, while if f : U � Rn ! Rm and g : V � Rm ! Rp with f(U) � V ,
g � f : U ! Rp is the composition of g with f .

2 The Derivative as a Linear Map

A function f : U � Rn ! Rm is di¤erentiable at a 2 M if there is a linear
mapping L : Rn ! Rm with the property that

lim
h!0

kf(a+ h)� f(a)� L(h)k
khk = 0:

The linear mapping L is called the di¤erential of f at a and is denoted dfa or
f 0(a). If such a linear map L exists, it is unique. The a¢ ne approximation to
f at a is given by the mapping

`(x) = f(a) + L(x� a):

Let�s examine several cases of this de�nition.

Example 1 (one-variable calculus): Suppose I is an open interval on the real
line, a 2 I, and f : I ! R is a mapping. If there is a number b so that

lim
h!0

jf(a+ h)� f(a)� bh)j
jhj = 0

then b is called the derivative of f at a, denoted f 0(a). The map h 7! bh is a
linear map from R1 to itself. The a¢ ne function `(x) = f(a) + b(x � a) gives
the best a¢ ne approximation to f near x = a. The graph of this function is the
line tangent to the graph of f at (a; f(a))

Example 2 (tangent lines to parametric curves): Suppose I is an open interval,
a 2 I, and  : I ! Rn is a mapping. If there is a vector v 2 Rn so that

lim
h!0

k(a+ h)� (a)� hvk
jhj = 0

then v is called the tangent vector to  at a and is also denoted 0(a). Note that
the mapping h 7! hv is a linear mapping from R1 to Rn. The graph of the a¢ ne
function `(t) = (a) + v(t� a) is the tangent line to  at a.
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Example 3 (tangent planes to the graph of a function): Suppose that U � R2
is open, that (x0; y0) 2 U , and that f : U ! R. If there is a vector v = (v1; v2) 2
R2 with the property that

lim
h!0

jf(x0 + h1; y0 + h2)� f(x0; y0)� (v1h1 + v2h2)j
khk

(here we�ve written h = (h1; h2)), then (v1; v2) is the di¤erential (or gradient) of
f and (x0; y0), and is denoted (rf) (x0; y0). Note that (v1h1 + v2h2) = hv; hi.
The map h 7! hv; hi is a linear map from R2 to R1. The a¢ ne function `(x; y) =
f(x0; y0)+ v1 (x� x0)+ v2(y� y0) gives the best a¢ ne approximation to f near
(x0; y0). The graph of this a¢ ne function is the plane tangent to the graph of f
at (x0; y0; f(x0; y0)).

Example 4 (the Jacobian matrix) Suppose that U � Rn is open, that a 2 U ,
and that f : U ! Rm. If there is an m� n matrix A with the property that

lim
h!0

kf(a+ h)� f(x)�AhkRm
khkRn

= 0

then f is di¤erentiable at a, and the matrix A is called the Jacobian matrix
of f at a, denoted df(a). Note that the mapping h 7! Ah is a linear mapping
from Rn to Rm. The a¢ ne mapping `(x) = f(a) + A(x � a) is the best linear
approximation to f near a.

We can think of a function f : U � Rn ! Rm as f(x) = (f1(x); : : : ; fm(x))
for component functions f1; : : : ; fm. Its Jacobian matrix is a matrix whose rows
are the gradients of the component functions. The Jacobian matrix df(a) is the

m� n matrix given by @f

@x1

df(a) =

264 (rf1)(a)
...

(rfm) (a)

375 =
2666666664

@f1
@x1

(a)
@f1
@x2

(a) � � � @f1
@xn

(a)

@f2
@x1

(a)
@f2
@x2

(a) � � � @f2
@xn

(a)

...
...

...
...

@fn
@x1

(a)
@fn
@x2

(a) � � � @fn
@xm

(a)

3777777775
Multiplying df(a) by a vector h gives a vector whose entries are h(rfk) (a); hi,
the linear approximation to the change in fk due to a displacement h.
The Jacobian matrix is the matrix of the linear mapping A with respect to

the standard bases of Rn and Rm.
An easy consequence of the derivative is that di¤erentiability implies conti-

nuity.

Exercise 5 Prove that if f : U � Rn ! Rm is di¤erentiable at a 2 U , then f
is continuous at a.
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Exercise 6 Prove that if f : U � Rn ! R and f is di¤erentiable at a, then

@f

@xi
(a) = h(rf) (a); eii

where ei is the ith basis vector in the usual basis of Rn. To prove this, use the
de�nition of rf (a) as the di¤erential together with the de�nition of the partial
derivative as

@f

@xi
(a) = lim

h!0

f(a+ hei)� f(a)
h

:

Exercise 7 Prove the statement above that the di¤erentiable df(a) of a map
from U � Rn to Rm has rows consisting ot the gradients of the component
functions fi.

Exercise 8 Show that if f : U � Rn ! Rn, then tr (df(a)) is the divergence of
f , de�ned as

(div f)(x) =
nX
i=1

@fi
@xi

(x)

Exercise 9 Show that if f : U � R3 ! R3, then the antisymmetric part of
(df(a)) takes the form 0@ 0 v3 �v2

�v3 0 v1
v2 �v1 0

1A
where v = (v1; v2; v3) is r� f (the �curl�of f).

In what follows we will denote by f 0(a) or df(a) the linear mapping T that
occurs in the de�nition of the derivative of f at a.
If f : U � Rn ! Rm has continuous partial derivatives up to order k in U , we

will write f 2 Ck(U), and if such an f has continuous partial derivatives of all
orders in U , we will write f 2 C1(U) and say that f is a smooth function. In this
course we will deal almost exclusively with smooth functions. In the statements
of theorems we will however impose the minimal smoothness hypotheses needed
to make them work.

3 The �Big Theorems�of Di¤erential Calculus

The �big theorems�of di¤erential calculus all concern the connection between
the local properties of a di¤erentiable function and the properties of its lineariza-
tion, the derivative. These are the chain rule, the inverse function theorem, and
the implicit function theorem.
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3.1 The Chain Rule

Theorem 10 (Chain Rule) Suppose that f : U � Rn ! Rm and g : V �
Rm ! Rp. Suppose that f(U) � V and that a 2 U . Finally, suppose that f is
di¤erentiable at a and that g is di¤erentiable at f(a). Then g�f is di¤erentiable
at a and

(g � f)0(a) = g0(f(a)) � f 0(a)
where the � denotes composition of linear maps.

Inotherwords, the derivative of a composition is the composition of deriva-
tives. Of course, if f and g are smooth functions, then the composition is also
a smooth function.

Exercise 11 Use the chain rule to prove the following formula. Suppose that
 : (�"; ") ! Rn, that f : U � Rn ! R is di¤erentiable at (0), and that
(0) 2 U . Prove that

d

dt

����
t=0

(f � ) (t) = h(rf) ((0)); 0(0)i

Show that if (t) = x0+ tei where ei is the ith basis vector in the standard basis,
then

d

dt

����
t=0

(f � ) (t) = @f

@xi
(x0):

3.2 The Inverse Function Theorem

Theorem 12 Let f : U � Rn ! Rn and suppose that f 0(a) is nonsingular.
There is a neighborhood V of a so that the map f : V ! Rn is invertible on
f(V ). Moreover, the inverse f�1 is di¤erentiable and�

f�1
�0
(a) = [f 0(f(a))]

�1 (1)

Inotherwords, a di¤erentiable mapping with invertible derivative is locally
invertible. We won�t give a proof but refer the reader to any standard text on
multivariate calculus. The idea is to establish the existence of an inverse by
using the linear approximation to f and a contraction mapping argument.
If the function f is smooth, it has a smooth inverse.

Exercise 13 Assuming that f�1 is di¤erentiable, use the Chain Rule to prove
(1).

3.3 The Implicit Function Theorem

The implicit function theorem allows us to assert that the solution set of an
equation of the form f(x) = 0 for certain nonlinear, di¤erentiable maps admits
a local parameterization. As such it plays a fundamental role in di¤erential
geometry.
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Theorem 14 (Implicit Function Theorem) Suppose that U � Rn and V � Rm
are open, and f : U � V ! Rm is di¤erentiable at (a; b). Suppose further that
the m�m submatrix

C = fDn+jfi(a; b)g1�i;j�m
is invertible. Then there is a neighborhood W of a and a function g :W ! Rm
with g(a) = b so that f(x; g(x)) = f(a; b) for all x 2W .

Inotherwords, the set of (x; y) near (a; b) with f(x; y) = f(a; b) is a �parame-
terized curve� in Rn+m parameterized locally by n parameters. The proof ac-
tually shows more, namely that the �parameterized curve�f(x; f(x)) : x 2Wg
is the only �curve�(actually, n-dimensional submanifold) passing through (a; b)
with this property.
Proof. Without loss of generality we can assume that f(a; b) = 0 (replace f by
f � f(a; b)). De�ne F : U � V � Rn � Rm ! Rn � Rm by

F (x; y) = (x; f(x; y))

The Jacobian matrix of F at (a; b) takes the form

dF (a; b) =

�
I 0
� M

�
and so has full rank by hypothesis. It follows from the inverse function theorem
that there is a neighborhood U1 � V1 of (a; b) and a neighborhood U2 � V2 of
(a; 0) together with a di¤erentiable mapping h : U2 � V2 ! U1 � V1 with the
property that F � h = Id. The mapping h necessarily takes the form

h(x; y) = (x; k(x; y))

for a di¤erentiable mapping k : U2 � V2 ! V1. We then compute�
F � h

�
(x; y) = (x; f(x; k(x; y))) = (x; y)

so setting y = 0 we have
f(x; k(x; 0)) = (x; 0):

We can take g(x) = h(x; 0) and obtain the desired inverse function.

Remark 15 The proof of the Implicit Function Theorem actually shows a bit
more. The mapping h constructed there has the property that

(f � h)(x; y) = y

for all (x; y) 2 U1�V1. We�ll use this remark to prove a stronger version of the
Implicit Function Theorem in what follows.

To understand this theorem it is useful to consider the following linear model.
Suppose that L : Rn�Rm ! Rm is a linear map with matrix A = [B C] where
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B is m� n and C is m�m. If C is invertible then we can parameterize kerA
with n parameters. For x = (y; z) 2 Rn � Rm with x 2 kerA, we have

By + Cz = 0

or
z = �C�1By

which describes the kernel in terms of n parameters. Notice that in this situa-
tion, the matrix A has maximal rank (namely m).
Thus, we can summarize the implicit function theorem as follows: if the

kernel of the di¤erential can be described by n parameters, then the zero set of
the di¤erentiable mapping can be described locally by n parameters.
This paraphrase suggests a stronger version of the implicit function theorem

which is in fact true. We�ll change notation a bit from the previous version
because we now assume that the di¤erential of the mapping F has rank k.

Theorem 16 Suppose that f : U � Rn ! Rp is continuously di¤erentiable,
that p � n. and a 2 U . If f(a) = 0 and the p� n matrix

fDjfi(a)g1�j�n;1�i�p

has rank p, then there is an open set A � U containing a and a di¤erentiable
function h : A! Rn with di¤erentiable inverse with the property that

(f � h) (x1; � � � ; xn) = (xn�p+1; � � � ; xn) :

In particular, f = 0 on the image of the set A \ fx : xn�p+1 = : : : = xn = 0g

Proof. We can consider f as a function f : Rn�p � Rp ! Rp. Since the
Jacobian has rank p, there is a set of indices 1 � j1 < � � � < jp � n so that the
p � p matrix formed from columns j1; � � � ; jp has full rank (i.e., is invertible).
Let � : Rn ! Rn be a linear map (permutation) that maps xjk to xn�p+k for
1 � k � p. The composition f � � then satis�es the hypothesis of the Implicit
Function Theorem, so we may de�ne

h = � � h

where h is the function constructed in that proof for the function f � �. Now
use Remark 15.

Exercise 17 Let Sn be the zero set of the function F (x) = jxj2 � 1 where
F : Rn+1 ! R. Use the implicit function theorem to show that there is a
neighborhood U � Rn containng 0 and a di¤erentiable map g : U ! R with
g(0) = 1 and F (x; g(x)) = 0. Also, compute the map g directly. Note that if
we de�ne f(x) = (x; g(x)) we obtain a local parameterization of the sphere Sn

near its north pole (0; : : : ; 0; 1).
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4 Regular Submanifolds of Rn

The sphere Sn is one of the simplest examples of a regular submanifold of Rn �
it is implicitly de�ned and, by Exercise 17, it can be locally parameterized by
n parameters near any point p 2 Sn. More generally:

De�nition 18 A subset M of Rn is a regular submanifold of Rn of dimension
k if for each p 2 M , there exists a neighborhood V of p in Rn, an open subset
U� of Rk, and a map f� from U� onto V \M such that:
(i) f� is a di¤erentiable homeomorphism,
(ii) the di¤erential df�(q) is injective for each q 2 U�.

In other words, M can be parameterized locally by k parameters. Familiar
examples include smooth curves in Rn (k = 1), hypersurfaces in Rn (k = n�1),
and Euclidean space itself (a �cheat�where k = n). As the example of the sphere
clearly shows, there need not be a global parameterization of the submanifold
and indeed there generally isn�t.
The pair (f�; U�) is called a local parameterization or a coordinate chart for

M . The map f� is called a coordinate map.
Our primary interest is in smooth submanifolds of Rn, where we require the

maps f� to be not simply di¤erentiable but also smooth, i.e., have derivatives
of all orders. That is a smooth submanifold of Rn is a regular submanifold of
Rn where the coordinate maps are smooth.
In order to take the notion of smooth manifold a step further it is very, very

useful to realize that smooth submanifolds of Rn are an example of a larger class
of objects that can also be de�ned intrinsically.

De�nition 19 A k-dimensional di¤erentiable manifold is a setM together with
a family of injective maps f� : U� ! M of open sets U� in Rk into M such
that:
(1) [�f�(U�) =M , and
(2) For each pair (�; �) with W := f�(U�) \ f�(U�) 6= ;, the sets f�1� (W ) and
f�1� (W ) are open sets in Rn and the maps f�1� �f� and f�1� �f� are di¤erentiable.
(3) The family f(U�; f�)g is maximal relative to (1) and (2).

Remark 20 The pair (U�; f�) with p 2 M is called a coordinate chart (or
parameterization or coordinate system) for M near p, and f�(U�) is called a
coordinate neighborhood of p. A family f(U�; f�)g satisfying (1) and (2) is
caled a di¤erentiable structure on M . The maps f�1� � f� are called transition
maps.

Remark 21 Condition (3) is a technical condition and can be satis�ed by taking
the union of all families that satisfy (1) and (2).

Before proceeding much further it would be nice to see that De�nition 19
really is a generalization of De�nition 18.
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Theorem 22 Suppose that M is a k-dimensional smooth submanifold of Rn.
Then M is also a k-dimensional di¤erentiable manifold.

Proof. We need to show that the transition maps are smooth. Consider a pair
of coordinate charts (U�; f�) and (U� ; f�) withW = f�(U�)\f�(U�) nonempty.
Since f� and f� are homeomorphisms the sets f�(U�) and f�(U�) are open and
so W and its inverse images under f�1� and f�1� are open subsets of Rk. To
show that

f�1� � f� : f�1� (W )! f�1� (W )

is a smooth map we will consider f�1� . Pick a 2 U� . The di¤erential df� is
injective and so its Jacobian matrix has maximal rank k, so that there are
indices 1 � i1 < � � � < ik � n with the property that the k � k matrix

fDjfim(a) : 1 � j;m � kg

is nonsingular. Now write (x; y) 2 Rk � Rn�k, denote by j1; : : : ; jn�k the in-
dices from f1; : : : ; ng that don�t belong to the set fi1; : : : ; ikg, and de�ne a new
function

F� : U� � Rn�k ! Rn

by
F�(x) = f�(x) + (0; : : : ; xi1 ; 0; � � � ; xik)

(that is, the second right-hand term has zeros in the j1; j2; � � � ; jk slots but
xi1 ; � � � ; xin�k in the remaining ones), then a bit of thought shows that:
(i) F� satis�es the hypothesis of the inverse function theorem and so has a
smooth inverse F�1� in a neighborhood of f�(x) in Rn, and
(ii) If z 2M then F�1� (z) = f�1� (z).
Since f�(U�) �M we can then write

f�1� � f� = F�1� � f�

which exhibits f�1� � f� as a composition of smooth maps.
Next, we�ll turn to implementing ideas of di¤erential calculus of smooth

submanifolds of Rn.
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