MA641 Differential Geometry Fall 2010 Problem Set 2 DUE: Friday, 24 September

- 1. Let $S \subset \mathbb{R}^3$ be a 2 dimensional regular surface. Prove that locally S is the graph of a smooth function. That is, for any $p \in S$, there is a neighborhood $V_p \subset S$ of p so that V is the graph of a smooth function that has one of the following three forms: z = f(x, y), or y = g(x, z), or x = h(y, z). *Hint:* there is a coordinate map $\mathbf{x} : U \subset \mathbb{R}^2 \to \mathbb{R}^3$ with $\mathbf{x}(0) = p$ and $d\mathbf{x}_0$ has maximal rank.
- 2. Consider local parameterizations $(\phi_{\alpha}, U_{\alpha})$ of the 2-sphere S^2 of the form $(u, v, \sqrt{1 u^2 v^2})$. Prove that S^2 is a differentiable manifold using this atlas. This requires that one check
 - (a) $f_{\alpha}: U_{\alpha} \to S^2$ is a homeomorphism,
 - (b) df_{α} has maximal rank,
 - (c) $\cup_{\alpha} U_{\alpha} = S^2$,
 - (d) the overlap maps $f_{\beta}^{-1} \cdot f_{\alpha}$ are smooth (give a formula).
- 3. Let $\gamma(t)$ be the parameterized curve:

$$\gamma(t) = (a\cos(t/c), a\sin(t/c), bt/c),$$

for $s \in R$ and positive real numbers (a, b, c) so that $a^2 + b^2 = c^2$.

- (a) Write the curve in arc length parametrization.
- (b) Compute the curvature and torsion.
- (c) Show that the lines tangent to γ make a constant angle with the *z*-axis.
- 4. do Carmo: page 32, exercise 2 on the orientability of the tangent bundle.