
2. Harmonic functions and harmonic extensions.
 (a) Stein and Shakarchi, page 66: Problem 11.
 (b) Stein and Shakarchi, page 67: Problem 12 b (we already did part a).
 (c) A comment: Suppose \(f(\varphi) \) is a continuous (therefore periodic) function on the unit circle. Then \(u_f(z) \), with \(z = re^{-\theta} \), \(0 \leq r < 1 \), defined on the unit disc by

 \[
 u_f(z) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - \varphi) f(\varphi) \, d\varphi
 \]

 is harmonic and satisfies the boundary condition \(u_f|_C = f \). This function \(u_f \) is called the harmonic extension of \(f \) to the disc (nothing for you to compute here).
