MAT 76 Problem Set 1 - Solutions
Spring '99

1. \(f: [0, 1] \rightarrow \{0, 1\} \) defined by \(f(x) = 1 \), \(x \in \mathbb{Q} \cap [0, 1) \), \(f(x) = 0 \) otherwise.

By contradiction: suppose \(f \) is cont. at \(x_0 \in (0, 1) \) so for any \(\varepsilon > 0 \) \(\delta_\varepsilon \) such that \(|f(x) - f(x_0)| < \varepsilon \), if \(x_0 \in \mathbb{Q} \cap [0, 1) \) \(f(x_0) = 1 \) and there exists \(y \in \mathbb{Q} \cap [0, 1) \) \(f(y) = 0 \) so \(|f(y) - f(x_0)| = 1 \), contradiction. If \(x_0 \in \mathbb{Q}^c \cap [0, 1) \) \(f(x_0) = 0 \) and one can choose \(y \in (x_0 - \delta, x_0) \) s.t. \(f(y) = 1 \) so again \(|f(y) - f(x_0)| = 1 \), contradiction. Finally, for \(x_0 = 0 \) or \(x_0 = 1 \), take \(\delta = 1/N_0 \) and the same argument works.

2. We know \(\Omega = \bigcup_{i=1}^\infty \Omega_i \) where \(\Omega_i \) is an open interval and \(\Omega_i \cap \Omega_j = \emptyset \) if \(i \neq j \). Suppose \(\Omega = \bigcup_{i=1}^\infty \Omega_i \) is another such representation. Each interval is written as \(\Omega_i = (a_i, b_i) \), \(a_i < b_i \) and \(\Omega_j = (c_j, d_j) \), \(c_j < d_j \). We order the \(a_i \)'s and \(c_j \)'s so \(a_1 < a_2 < \ldots < c_1 < c_2 < \ldots \) then necessarily (due to the fact that the intervals are disjoint) \(b_1 < a_{j+1} \) and \(d_1 < c_{j+1} \). Begin with \(\Omega_i \) and \(\Omega_j \) \(a_i = c_j \) or otherwise, if \(a_i < c_j \), \(\Omega_i \) doesn't contain all the points of \(\Omega \). Next, \(b_1 = d_1 \) for it not, say \(b_1 < d_1 \), and either \(a_2 < d_1 \), in which case there are pts of \(\Omega \) not in \(\Omega_i \), or \(a_2 > d_1 \) (so \(b_1 < d_1 < a_2 \)) and again, there are pts of \(\Omega \) not in \(\Omega_i \) or \(a_2 = d_1 \), so \(b_1 \in \Omega \) again a contradiction. So suppose we have \(\Omega = \bigcup_{i=1}^{m-1} \Omega_i \) and \(\Omega = (a_i, b_n) \) \(\Omega = (c_k, d_n) \). The same reasoning shows \(a_n = c_n \) and \(b_n = d_n \). So by induction, \(\Omega = \bigcup_{i=1}^{m} \Omega_i \). Thus the 2 representations are the same.

3. (WZ pg. 13) Let \(K_1, K_2 \subset \mathbb{R}^d \) be nonempty disjoint compact subsets \(K_1 \cap K_2 = \emptyset \). The distance between them is \(d(K_1, K_2) = \inf \{x - y : x \in K_1, y \in K_2\} \). Suppose \(d(K_1, K_2) > 0 \) so for \(\xi \) seq. \(x_\xi - y_\xi \), \(y_\xi \in K_2 \).
\[y_n \in k_2 \text{ with } |x_n - y_n| \to 0. \text{ Since } k_1 \text{ is compact, } \exists x_n \to x_0 \in k_1. \text{ Similarly } \exists y_n \to y_0 \in k_2. \text{ Then } |x_n - y_n| \to 0 \text{ so } x_0 = y_0 \in k_1 \cap k_2, \text{ a contradiction. This means } d(k_1, k_2) > 0. \]

4. (WZ pg 12) i) \(\overline{\lim E_j} = \bigcap_{j=1}^{\infty} (U_k \bigcup_{j=1}^{k} E_j) \). If \(x \in \overline{\lim E_j} \) then \(x \in U_k \bigcup_{j=1}^{\infty} E_j \) for all \(j \). If \(x \) belonged to only finitely many sets \(E_1, \ldots, E_j \), this means \(x \notin \bigcup_{j=1}^{\infty} E_j \), a contradiction.

Conversely, if \(x \) belongs to infinitely many \(E_j \)'s then \(x \in \bigcup_{j=1}^{\infty} E_j \) for all \(j \). x \(\in \overline{\lim E_j} \).

ii) \(\overline{\lim E_j} = \bigcap_{j=1}^{\infty} E_j \), then \(x \in \overline{\lim E_j} \) if \(x \notin \bigcap_{k=j}^{\infty} E_k \) for any one \(j \).

so \(x \) belongs to all but finitely many \(E_j \)'s. Clearly, if \(x \in E_j \) for all but finitely many \(j \), \(E_1, \ldots, E_{j_0} \), \(x \in \bigcap_{k=j_0+1}^{\infty} k \) so \(x \in \overline{\lim E_j} \).

5. (WZ pg 13) Let \(E_k = \begin{cases} [-\frac{1}{k+1}, \frac{1}{k+1}] \text{ if } k \text{ odd} \\ [-\frac{1}{k}, \frac{1}{k}] \text{ if } k \text{ even} \end{cases} \). \(\bigcap_{k=1}^{\infty} E_k = \{0\} \text{ and } \bigcap_{k=1}^{2n} E_k = [-1/n, 1/n] \).

\(\overline{\lim E_n} = \{0\} \) only point in all \(E_j \) for some \(j \) onward as \(\bigcap_{k=1}^{2n} E_k = \{0\} \).

\(\overline{\lim E_n} = [-1, 1] \) as any \(p \) in \([-1, 1] \) belongs to \(\bigcap_{k=1}^{\infty} E_k = \{0\} \).

since \(\bigcap_{k=1}^{\infty} E_k = [-1, 1] \)

6. Let \(k_j \) be a decr seq \(k_j \geq k_{j+1} \) (strict) of nonempty compact subs. Let \(x_j \in k_j \setminus k_{j+1} \), so \(x_j \in k_1 \forall j \). As \(k_1 \) is compact \(\exists \) convergent subseq. \(\{x_{j_k}\} \) \(\quad \) and \(x_k \to x_0 \in k_1 \). Claim: \(x_0 \notin k_j \) \(\forall j \). If not, \(\exists J_0 \) s.t. \(x_0 \in k_{J_0} \) and \(x_0 \notin k_{J_0} \cap k_{J_0} \) so \(d(x_0, k_{J_0}) > 0 \) by
problem 3. But all but finitely many \(x_j \)'s belong to \(\cap K_m \) and
consequently all but finitely many \(x_k, j \in \cap K_m \) so \(x_0 \) can't be
their limit, a contradiction.
So, \(x_0 \in \cap K_j \) and it is nonempty.

7. Example: \(K_j \) noncompact \(K_j \supset K_{j+1} \) but \(\cap K_j \neq \emptyset \)
closed.

\[K_j = \{ (x_1, ..., x_{n-1}, y) \mid y \geq j \} \quad \text{closed half-space} \]

\[K_{j+1} \subset K_j \forall j \] but \(\cap K_j = \emptyset \) (if \(x \in \cap K_j \),
\[x_n > j \forall j \). \]