MA681–001 Functional Analysis Fall 2016 Problem Set 1 DUE: Wednesday, 7 September 2016

- 1. Show that C([0,1]) with the sup-norm is a Banach space. Let A be the set of all polynomials with rational complex coefficients (that is, those of the form a + ib with $a, b \in Q$). Show that A is dense in C([0,1]). Conclude that this Banach space is separable.
- 2. Banach Algebras. A Banach algebra is a Banach space that is also an algebra. This means that there is a multiplication of elements which is compatible with all the other structures. In particular, if $x, y \in A$, then $xy \in A$ and $||xy|| \leq ||x|| ||y||$, and the multiplication is distributive. Show that $M_n(C)$ and $(C([0,1]), || \cdot ||_{\infty})$ are Banach algebras.
- 3. Suppose $(X, \langle \cdot, \cdot \rangle)$ is an inner product space. Show that there is a Hilbert space $(\tilde{X}, \langle \cdot, \cdot \rangle_{\tilde{X}})$ so that X is isomorphic with a dense subset of \tilde{X} and the inner product satisfies $\langle \tilde{x}, \tilde{y} \rangle_{\tilde{X}} = \langle x, y \rangle_X$ for all $x, y \in X$. You may use relevant parts of the discussion in class.
- 4. Conway, page 7, Problem 11.
- 5. Postponed to a later PS. Consider the Banach space $(C([0, 1]), \|\cdot\|_{\infty})$. Let $a \in C([0, 1])$ and define the multiplication operator $A : f \in C([0, 1]) \rightarrow af$. Show that A is a bounded linear operator and compute it's norm. If |a| < 1, show that the operator 1 + A is a boundedly invertible operator.