MA681–001 Functional Analysis Fall 2016 Problem Set 3 DUE: Monday, 3 October 2016

- 1. Read pages 305–306 of Hislop-Sigal on the set of all bounded operators from X to Y, which is denoted $\mathcal{L}(X, Y)$ (also called $\mathcal{B}(X, Y)$). Do problem A3.7, which finishes the proof of Theorem A3.16. When we have X = Yand use the adjoint, show that $\mathcal{L}(X)$ is a *Banach**algebra.
- 2. Consider the Banach space $(C([0,1]), \|\cdot\|_{\infty})$. Let $a \in C([0,1])$ and define the multiplication operator $A : f \in C([0,1]) \to af$. Show that A is a bounded linear operator and compute it's norm. If |a| < 1, show that the operator 1 + A is a boundedly invertible operator.
- 3. Conway, page 36: # 7, 12 and 14, 15.
- 4. Conway, page 40: # 1, 4.