MA681–001 Functional Analysis Fall 2016 Problem Set 4 DUE: Monday, 24 October 2016

- (1) Prove that the identity operator $I \in \mathcal{B}(\mathcal{H})$ is compact if and only if the Hilbert space \mathcal{H} is finite dimensional.
- (2) Prove that if a compact operator $T \in \mathcal{K}(\mathcal{H})$ is invertible (that is, $0 \notin \sigma(T)$), then the Hilbert space \mathcal{H} is finite dimensional.
- (3) Prove that an isometry on a finite-dimensional complex Hilbert space (isomorphic to \mathbb{C}^N , $N < \infty$) is unitary.
- (4) Let T_L be the left shift operator on $\ell^2_{\mathbb{C}}(\mathbb{N})$. Compute the spectrum of T_L . Find the eigenvalues of T_L and the corresponding eigenvectors. What can you say about the spectrum of its adjoint? Does the adjoint have any eigenvalues?
- (5) Suppose T_n is a sequence of bounded operators on a Hilbert space \mathcal{H} so that $\langle f, T_n g \rangle$ converges for each pair of vectors $f, g \in \mathcal{H}$. Prove that there exists a bounded operator T so that the sequence T_n converges weakly to T. Hint: use the principle of uniform boundedness twice.