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We obtain a bound on the expectation of the spectral shift function for alloy-type random Schrödinger operators on Rd in the region of
localisation, corresponding to a change from Dirichlet to Neumann boundary conditions along the boundary of a finite volume. The
bound scales with the area of the surface where the boundary conditions are changed. As an application of our bound on the spectral shift
function, we prove a reverse Wegner inequality for finite-volume Schrödinger operators in the region of localisation with a constant
locally uniform in the energy. The application requires that the single-site distribution of the independent and identically distributed
random variables has a Lebesgue density that is also bounded away from zero. The reverse Wegner inequality implies a strictly positive,
locally uniform lower bound on the density of states for these continuum random Schrödinger operators.

1 Introduction

The effect of changing boundary conditions on spectral and scattering properties of Schrödinger operators on multi-
dimensional Euclidean space Rd is an important issue that is still far from being well understood. This is true even
when switching between Dirichlet and Neumann boundary conditions. In the discrete case the change from Dirichlet
to Neumann boundary conditions along the boundary of a finite volume region is conveyed by a finite-rank operator.
The rank is proportional to the surface area of the region where the boundary conditions are changed. This results
in a bound on the corresponding spectral shift function proportional to this surface area. For multi-dimensional
continuum Schrödinger operators, however, this is a delicate issue, as was already pointed out in [23] decades ago.
Here, the change in boundary conditions is not given by a finite-rank operator, and there is no uniform bound on
the corresponding spectral shift function of the order of the surface area where the boundary conditions are changed
[30, 28]. Even worse, [23] considers the spectral shift function for the Dirichlet Laplacians on a cube of side length L
with different boundary conditions on a smaller cube of side length ` that is inscribed into the big cube. Keeping the
smaller cube of size ` fixed, Kirsch proves that the effect of changing boundary conditions on its surface causes the
spectral shift function to diverge in the limit of large L. We refer to Remarks 2.9 below for more details.

One of the main results of this paper is that in the presence of disorder-induced localisation, this effect no longer
occurs and the multi-dimensional continuum situation again resembles the discrete version. In Theorems 2.6 and 2.7 we
obtain new bounds on the expectation of the spectral shift function for alloy-type random Schrödinger operators on Rd
for energies in the region of localisation, corresponding to a change from Dirichlet to Neumann boundary conditions
along the boundary of a finite volume. Localisation is the crucial new ingredient in controlling the change of boundary
conditions for continuum Schrödinger operators. In the region of localisation a change of boundary conditions is mostly
felt near the relevant boundary, an argument we make rigorous for proving Theorems 2.6 and 2.7.

As an application of our spectral shift bound, we derive a strictly positive lower bound for the density of states
of alloy-type random Schrödinger operators on Rd. Such bounds have been proven for its discrete counterpart, the
Anderson model on Zd [21, 17], following an argument given in [37]. Extending the proof of a lower bound on the
density of states for the discrete Anderson model to the case of multi-dimensional continuum random Schrödinger
operators requires a sufficiently detailed control of the spectral shift function for a Dirichlet-Neumann bracketing
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argument. For this reason, the problem remained open for quite some time. Theorem 2.7 is the crucial ingredient in
our proof of a reverse Wegner inequality in Theorem 2.3. From that we deduce a lower bound for the density of states
of alloy-type random Schrödinger operators in Corollary 2.5.

2 Model and results

We consider a random Schrödinger operator with an alloy-type random potential

ω 7→ Hω := H0 + Vω := H0 +
∑

k∈Zd
ωkuk (2.1)

acting on a dense domain in the Hilbert space L2(Rd) for d ∈ N. Here H0 is a non-random self-adjoint operator and
ω 7→ Vω is a random potential subject to the following assumptions.

(K) The unperturbed operator is given by H0 := −∆ + V0 with −∆ being the non-negative Laplacian on d-
dimensional Euclidean space Rd and V0 ∈ L∞(Rd) is a deterministic, Zd-periodic and bounded background
potential.

(V1) The family of random coupling constants ω := (ωk)k∈Zd ∈ RZ
d

is distributed identically and independently
according to the Borel probability measure P :=

⊗
Zd P0 on RZd . We write E for the corresponding expec-

tation. The single-site distribution P0 is absolutely continuous with respect to Lebesgue measure on R. The
corresponding Lebesgue density ρ is bounded and has support supp(ρ) ⊆ [0, 1].

(V2) The single-site potentials uk( · ) := u( · − k), k ∈ Zd, are translates of a non-negative bounded function 0 6 u ∈
L∞c (Rd) with support contained in a ball of radius Ru > 0. There exist constants Cu,−, Cu,+ > 0 such that

0 < Cu,− 6
∑

k∈Zd
uk 6 Cu,+ <∞. (2.2)

The above assumptions are not optimal but are chosen in order to avoid unnecessary technical complications. We
note that the condition supp(ρ) ⊆ [0, 1] in (V1) is not stronger than the seemingly weaker property supp(ρ) is compact.
In fact, the former can be obtained from the latter via the inclusion of an additional periodic potential, a change of
variables of the random couplings (ωk)k∈Zd and by rescaling the single-site potential u. The random potential V need
not even be of the precise form (2.1), as Zd-translation invariance can be dropped for most of the arguments that do
not involve the integrated density of states or require deterministic spectrum.

We drop the subscript ω from H and other quantities when we think of these quantities as random variables (as
opposed to their particular realizations). The model is Zd-ergodic with respect to lattice translations. It follows that
there exists a closed set Σ ⊂ R, the non-random spectrum ofH , such that Σ = σ(H) holds P-almost surely [31], where
σ(H) denotes the spectrum of H . The covering conditions (2.2) imply [31]

Σ0 + [0, Cu,−] ⊆ Σ ⊆ Σ0 + [0, Cu,+], (2.3)

where Σ0 := σ(H0) is the spectrum of the unperturbed periodic operator.
Given an open subset G ⊂ Rd, we write HG for the Dirichlet restriction of H to G. We define the random finite-

volume eigenvalue counting function

R 3 E 7→ NL(E) := Tr
(
1(−∞,E](HL)

)
(2.4)

for L > 0, where 1B stands for the indicator function of a set B, HL := HΛL and ΛL := (−L/2, L/2)d for the open
cube about the origin of side-length L. The Wegner estimate holds under our assumptions: given a bounded interval
I ⊂ R and E1, E2 ∈ I with E1 < E2, we have

E
[
NL(E2)−NL(E1)

]
6 CW,+(I)|ΛL|(E2 − E1) (2.5)

for all L > 0, where CW,+(I) is a constant which is polynomially bounded in I+ := sup I , and |B| is the Lebesgue
measure of a Borel-measurable set B ⊆ Rd. We refer to [10, 32, 25] for recent developments concerning the Wegner
estimate. Ergodicity implies that, almost surely, the limit

N(E) := lim
L→∞

1

|ΛL|
NL(E) (2.6)
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exists for all E ∈ R in our situation [31]. The non-random limit function N is called the integrated density of states
(IDOS) of H , see e.g. [24, 36] for reviews. We conclude from the Wegner estimate (2.5) that the IDOS N is Lipschitz
continuous, hence absolutely continuous with a bounded Lebesgue density n. The latter is referred to as the density of
states (DOS) of H . The Wegner bound for the DOS reads

ess sup
E∈I

n(E) 6 CW,+(I). (2.7)

Such upper bounds for the IDOS or DOS have been studied extensively, as they are an important ingredient for most
proofs of Anderson localisation via the multi-scale analysis.

One goal of this paper is to derive lower bounds for the IDOS and DOS of alloy-type random Schrödinger
operators that complement (2.5) and (2.7), respectively. In the discrete case, i.e., for the classical Anderson model on
the lattice Zd, such bounds have been proven in [21, 17], following an argument given in [37]. The proof can be adapted
to apply also to one-dimensional continuum random Schrödinger operators. Even though it is well-known [7, Prop.
VI.1.3] that Σ = supp(n), this alone does not imply n > 0 Lebesgue-almost everywhere on Σ. (A counterexample for
this implication is provided by the indicator function of the complement of a “fat” Cantor set, that is, of a nowhere
dense set with positive Lebesgue measure.) Therefore it is of interest to have a locally uniform lower bound for the
DOS. In addition, such a bound is of interest because the DOS occurs as the intensity of the Poisson point process
describing level statistics of eigenvalues in the localised regime. This is well known by now for the discrete Anderson
model [27, 8] and for a one-dimensional continuum model [29]. It is likely to be true for multi-dimensional continuum
models as well [9].

The proof of a lower bound on the DOS for alloy-type random Schrödinger operators on Rd, which are continuum
random Schrödinger operators, requires a sufficiently detailed control of the spectral shift function for a Dirichlet-
Neumann bracketing argument. This control is the main accomplishment of this paper. In Theorems 2.6 and 2.7 we
obtain new bounds on the expectation of the spectral shift function for alloy-type random Schrödinger operators on
Rd in the region of localisation, corresponding to a change from Dirichlet to Neumann boundary conditions along the
boundary of a finite volume. Here localisation is the new ingredient that allows us to overcome the inherent differences
between the lattice model on Zd and the continuum model on Rd. Theorem 2.7 is the crucial ingredient in our proof
of a lower bound for the IDOS and DOS of alloy-type random Schrödinger operators. These bounds are stated in
Theorem 2.3 and Corollary 2.5.

We characterise the energy region of complete localisation, see e.g. [16], for random Schrödinger operators in
terms of fractional moment bounds [1]. Let χx := 1Λ1(x) denote the multiplication operator corresponding to the
indicator function of the unit cube Λ1(x) := x+ Λ1, centred at x ∈ Rd. Given an open subset G ⊆ Rd, we use the
notation Rz(HG) := (HG − z)−1 for the resolvent of HG with z ∈ C \ σ(HG) in the resolvent set of HG.

Definition 2.1 (Fractional moment bounds). We write E ∈ ΣFMB := ΣFMB(H), the region of complete localisation, if
there exists a neighbourhood UE of E, a fraction 0 < s < 1 and constants C, µ > 0 such that for every open subset
G ⊆ Rd and x, y ∈ G we have the bound

sup
E′∈UE ,η 6=0

E [‖χxRE′+iη(HG)χy‖s] 6 Ce−µ|x−y| . (2.8)

Remarks 2.2. (i) If (2.8) holds for some 0 < s < 1, then it holds for all 0 < s < 1 with constants C and µ
depending on s, see [4, Lemma B.2], which generalises to continuum random Schrödinger operators [13, Lemma A.2].
In particular, if I ⊂ ΣFMB is a compact energy interval, then, for every 0 < s < 1 there exist constants C, µ such that
(2.8) holds with these constants, uniformly in E ∈ I .

(ii) Our proofs do not require the validity of (2.8) for every open subset G ⊆ Rd. All we need are subsets that are
cubes or differences of cubes.

(iii) Bounds of the form (2.8) have first been derived for the lattice Anderson model in [3], see also [2, 4], either
for sufficiently strong disorder or in the Lifshitz tail regime. They were generalised to continuum random Schrödinger
operators in [1]. The formulation there differs with respect to the distance function that is used. We refer to [1, (8) in
App. A] for an interpretation. Bounds as in (2.8) have been derived in [6] by an adaptation of the methods from [1] in
the fluctuation boundary regime.

2.1 Lower bound on the DOS

The validity of our main application rests on an additional assumption on the model.
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(V1’) The single-site probability density is bounded away from zero on the unit interval

ρ− := ess inf
ν∈[0,1]

ρ(ν) > 0. (2.9)

In fact, ρ need not be bounded away from zero uniformly on all of its support; a small neighbourhood of the endpoints
0 and 1 could be omitted. For simplicity, we will assume (V1’) as stated.

As described in (2.5), the usual Wegner estimate is an upper bound on the expectation of the eigenvalue counting
function. The following new result is a lower bound on the same quantity that we refer to as a reverse Wegner estimate.
We use the notation Int(A) for the interior of a set A ⊂ R.

Theorem 2.3. Assume (K), (V1), (V1’) and (V2). Consider a compact energy interval I ⊂ ΣFMB ∩ Int
(
Σ0 +

[0, Cu,−]
)
. Then there exists a constant CW,−(I) > 0 and an initial length scale L0 > 0 such that

E
[
Tr
(
1[E1,E2](HL)

)]
> CW,−(I)(E2 − E1)|ΛL| (2.10)

holds for all E1, E2 ∈ I with E1 < E2 and all L > L0.

Remark 2.4. Our proof uses Wegner’s original trick [37] which turns the disorder average on the left-hand side of
(2.10) into an effective shift for the IDOS of the unperturbed operator H0. (Here, the covering condition enters in the
continuum model.) This is why, in general, we cannot establish the lower bound (2.10) for all energies in the region of
complete localisation ΣFMB.

It is well known that a Wegner estimate implies existence and boundedness of the DOS. In the same vein,
the reverse Wegner estimate (2.10) implies a local lower bound on the DOS. Thus, the next corollary follows from
Theorem 2.3 in the same way as (2.7) follows from (2.5).

Corollary 2.5. Assume (K), (V1), (V1’) and (V2). Consider a compact energy interval I ⊂ ΣFMB ∩ Int
(
Σ0 +

[0, Cu,−]
)
. Then there exists a constant CW,−(I) > 0 such that

ess inf
E∈I

n(E) > CW,−(I). (2.11)

As was already mentioned, the essential difficulty to overcome in the proof of Theorem 2.3 is to estimate the
error arising from a local change of boundary conditions. This is why Theorem 2.3 is limited to the region of complete
localisation.

2.2 Bounds on the spectral shift function

For L ∈ R>0 we write HD
L , respectively HN

L for the restrictions of the operator H to the cube ΛL with Dirichlet,
respectively Neumann, boundary conditions. Moreover, we define the spectral shift function (SSF) of the pair HD

L and
HN
L at energy E ∈ R by

ξ
(
E,HN

L , H
D
L

)
:= Tr

(
1(−∞,E](H

N
L )− 1(−∞,E](H

D
L )
)

(> 0). (2.12)

Note that, as |ΛL| is finite, this definition makes sense and coincides with the abstract definition of the SSF [38]. Our
new technical result establishes a local bound for the disorder-averaged SSF inside the region of complete localisation.

Theorem 2.6. Assume (K), (V1) and (V2). Given a compact energy interval I ⊂ ΣFMB and an arbitrary length L0 > 0,
there exists a constant C > 0 such that

sup
E∈I
E
[
ξ
(
E,HN

L , H
D
L

)]
6 CLd−1 (2.13)

holds for all L > L0.

In order to prove Theorem 2.3 we need a modified version of the above theorem. For L, l ∈ R>0 and x0 ∈ ΛL such
that Λl(x0) ⊂ ΛL we write HD

L,l, respectively HN
L,l for the restrictions of the operator H to ΛL \ Λl(x0) with Dirichlet,

respectively Neumann, boundary conditions along the inner boundary ∂Λl(x0) and Dirichlet boundary conditions along
the outer boundary ∂ΛL. Then we have a similar bound for the corresponding spectral shift function as in Theorem
2.6.
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Theorem 2.7. Assume (K), (V1) and (V2). Given a compact energy interval I ⊂ ΣFMB, there exists a constant C > 0
such that

sup
E∈I
E
[
ξ
(
E,HN

L,l, H
D
L,l

)]
6 Cld−1 (2.14)

holds for all L, l > 0 and x0 ∈ ΛL, provided Λl(x0) ⊂ ΛL with dist
(
∂Λl(x0), ∂ΛL

)
> 3.

The proofs of Theorem 2.6 and Theorem 2.7 proceed along the same lines. Since the domain in the second theorem
is slightly more uncommon, and in addition the estimate is uniform in the side length L of the bigger box, we give
the proof of Theorem 2.7. Theorems 2.6 and 2.7 used together provide an analogous estimate for the averaged SSF in
the case where the perturbation consists of an additional Dirichlet or Neumann boundary on the surface of a smaller
subcube.

Corollary 2.8. Assume (K), (V1) and (V2). Given a compact energy interval I ⊂ ΣFMB, there exists a constant C > 0
such that

sup
E∈I
E
[∣∣ξ
(
E,HL, H

?
L,l ⊕H?

Λl(x0)

)∣∣] 6 Cld−1 (2.15)

holds for all L, l > 0 and x0 ∈ ΛL, provided Λl(x0) ⊂ ΛL with dist
(
∂Λl(x0), ∂ΛL

)
> 3. Here, ? ∈ {N,D} denotes

Dirichlet, respectively Neumann, boundary conditions on ∂Λl(x0).

Remarks 2.9. (i) The crucial point in Theorem 2.7 besides the uniformity of the bound in L is the quantitative
control in terms of the “size” of the perturbation, which, in this case, is the volume |∂Λl(x0)| of the surface where the
boundary condition is changed. Both properties are needed together in the application for Theorem 2.3. The spectral
shift estimate in [11], which holds for a particular potential perturbation, is valid for Lebesgue-almost all energies. It
is uniform in L but provides no control on the “size” of the perturbation. Known Lp-bounds [12, 20, 19] are not as
detailed either.

(ii) A result analogous to Corollary 2.8 holds even for arbitrary open subsets G ⊆ Rd instead of the cube ΛL, if
one considers perturbations by compactly supported, bounded potentials instead of an additional boundary condition.
This follows from [13, Thm. 3.1, Cor. 3.2]. However, in the presence of a Neumann boundary conditions, as is the case
here, some regularity of the surface seems to be needed for the a priori trace-class estimates in the Appendix to extend
properly, see Lemma A.1.

(iii) The condition dist
(
∂Λl(x0), ∂ΛL

)
> 3 in Theorem 2.7 and Corollary 2.8 can be replaced by

dist
(
∂Λl(x0), ∂ΛL

)
> δ > 0. The constant C in the statements would then depend on δ. We took δ = 3 for technical

convenience.
(iv) The statement of Theorem 2.6, which is locally uniform in energy, should be compared to known estimates on

the effect of changing boundary conditions in the continuum. For deterministic Schrödinger operators with magnetic
fields, a L1-bound for the spectral shift function, which is proportional to Ld−1, can be found in [30, Thm. 4, Prop. 5].
The estimates in [14, Thm. 6.2] and [28, Thm. 1.4] are pointwise in energy, but compare the integrated densities of
states at slightly shifted energies, which introduces an arbitrarily small error of size Ld.

(v) In the lattice case and for d = 1 in the continuum, one can bound the SSF ξ
(
E,HD

L,l, H
N
L,l

)
simply by the

rank of the perturbation HD
L,l −HN

L,l, which is of order ld−1 independently of L. For multi-dimensional continuum
Schrödinger operators, however, it is a subtle problem to obtain bounds on the SSF, which hold pointwise in energy
and are uniform in the volume. This has been noted many times after [23] had discovered that in d > 2 for every fixed
l > 0 and every E > 0,

sup
L>l

ξ
(
E,−∆N

L,l,−∆D
L.l

)
=∞. (2.16)

The divergence in (2.16) is attributed to the increasing degeneracies of the eigenvalues of the Laplacian for larger
volumes at fixed energy. This represents a principal danger that would have to be ruled out for general multidimensional
continuum Schrödinger operators. Therefore it is plausible that localisation and the disorder average help in this
situation and enable us to prove bounds of the form (2.14).

The remainder of the paper is organised as follows: the next section contains a proof of Theorem 2.3. The main
novelty, Theorem 2.7, is proven separately in Section 4. There we make repeated use of some a priori trace-class
estimates. We review them in the Appendix for the convenience of the reader.

3 Proof of Theorem 2.3

In this section we prove Theorem 2.3, given Theorem 2.7.
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3.1 Performing a change of variables.

We fix E ∈ R and ε > 0. Let fε ∈ C∞(R) be a smooth, monotone increasing switch function such that

fε(x) :=

{
0 x 6 0

1 x > ε
, (3.1)

and its derivative satisfies 0 6 f ′ε 6 (2/ε)1(0,ε). We define its translate fE,ε := fε( ··· − E) and estimate, using the
bounds on its derivative and the upper bound from (2.2),

1

Ldε
E [NL(E + ε)−NL(E)] =

1

Ldε
E
[
Tr
(
1(E,E+ε](HL)

)]

>
1

2Ld
E
[

Tr
(
f ′E,ε(HL)

)]

>
1

2LdCu,+

∑

k∈Zd
E
[

Tr
(
ukf

′
E,ε(HL)

)]
. (3.2)

The k-sum in (3.2) effectively runs over only finitely many k, and we will perform it in two steps. To this end we
introduce the notation

B# := B ∩ Zd (3.3)

for the set of lattice points in a subset B ⊆ Rd. Apart from a boundary layer, we partition the cube ΛL into smaller
cubes Λl,j := Λl(j) of side-length l ∈ N, l < L− 2Ru − 6, centred at

j ∈ ΓlL :=
{

(k1, ..., kd) ∈ (lZ)d : |k|∞ 6 (L− l)/2−Ru − 4
}
. (3.4)

Here, | ··· |∞ denotes the maximum norm on Rd and, as in Assumption (V2), the single-site potential u has support in a
ball of radius Ru > 0. As uk > 0 and f ′E,ε > 0, we infer from (3.2) that

1

Ldε
E [NL(E + ε)−NL(E)] >

1

2LdCu,+

∑

j∈ΓlL

∑

k∈Λ#
l,j

E
[

Tr
(
ukf

′
E,ε(HL)

)]
. (3.5)

For j ∈ ΓlL, we abbreviate
FΛl,j (ω) :=

∑

k∈Λ#
l,j

Tr
(
ukf

′
E,ε(Hω,L)

)
, (3.6)

where the dependence on the disorder realisation ω is stressed. We proceed by estimating the expectation E[FΛl,j ] from
below. We denote by ωΛl,j , respectively ωΛc

l,j
, the collection of random variables corresponding to single-site potentials

centred inside, respectively outside, the cube Λl,j . We remark that the function FΛl,j may depend on coupling constants
ωk for k /∈ ΛL with |k|∞ < L/2 +Ru. Assumption (V1) implies

E[FΛl,j ] > ρ
θ(l)
− EΛc

l,j

[∫

[0,1]θ(l)
dωΛl,j FΛl,j

(
(ωΛl,j , ωΛc

l,j
)
)]
, (3.7)

where EΛc
l,j

[ · ] denotes the expectation with respect to the random variables ωΛc
l,j

and θ(l) := |Λ#
l,j | denotes the

cardinality of Λ#
l,j which is independent of j ∈ ΓlL and of order ld. For each fixed j, we perform the same change

of variables as in [37, 17]
ωΛl,j = {ωk}k∈Λ#

l,j
7→ η := {ηk}k∈Λ#

l,j
, (3.8)

ηk := ωk − ωj for k ∈ Λ#
l,j \ {j} and ηj := ωj . This yields

∫

[0,1]θ(l)
dωΛl,j FΛl,j

(
(ωΛl,j , ωΛc

l,j
)
)

=

∫

[0,1]

dηj

∫

[−ηj ,1−ηj ]θ(l)−1

(
∏

k∈Λ#
l,j

k 6=j

dηk

)
FΛl,j

(
(ωΛl,j (η), ωΛc

l,j
)
)

>

∫

[δ,1−δ]
dηj

∫

[−δ,δ]θ(l)−1

(
∏

k∈Λ#
l,j

k 6=j

dηk

)
FΛl,j

(
(ωΛl,j (η), ωΛc

l,j
)
)

(3.9)
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for any fixed 0 < δ < 1/4. The reason for the maximum value 1/4 for δ will become clear in (3.13), (3.14) below,
where it guarantees the non-negativity of the right-hand side of (3.13). The ηj-integral on the right-hand side of (3.9)
will be evaluated by the Birman-Solomyak formula, see [5, 34, 18]. To do so, we rewrite

HL = H0,L + V cj + Vj + ηjUj =: H̃L,j + ηjUj , (3.10)

as a one-parameter operator family with respect to the parameter ηj , where H0,L is the Dirichlet restriction of H0 to
ΛL and

Uj :=
∑

k∈Λ#
l,j

uk, Vj :=
∑

k∈Λ#
l,j

k 6=j

ηkuk, V cj :=
∑

k 6∈Λ#
l,j

ωkuk
∣∣
ΛL
. (3.11)

The Birman-Solomyak formula yields
∫

[δ,1−δ]
dηj FΛl,j

(
(ωΛl,j (η), ωΛc

l,j
)
)

=

∫

[δ,1−δ]
dηj Tr

(
Ujf

′
E,ε(H̃L,j + ηjUj)

)

= Tr
(
fE,ε

(
H̃L,j + (1− δ)Uj

)
− fE,ε(H̃L,j + δUj)

)
. (3.12)

For the values of the parameters (ηk)
k∈Λ#

l,j
in the integration in (3.9), we have the estimate −δUj 6 Vj 6 δUj so that

(3.12) implies ∫

[δ,1−δ]
dηj FΛl,j

(
(ωΛl,j (η), ωΛc

l,j
)
)
> Tr

(
fE,ε(HL,j,+)

)
− Tr

(
fE,ε(HL,j,−)

)
. (3.13)

Here we have introduced the operators

HL,j,+ := H0,L + V cj + (1− 2δ)Uj ,

HL,j,− := H0,L + V cj + 2δUj
(3.14)

with Dirichlet boundary conditions on ∂ΛL. Combining (3.13), (3.9) and (3.7), we find

E[FΛl,j ] >
(2δρ−)θ(l)

2δ
E
[

Tr
(
(1− fE,ε)(HL,j,−)− (1− fE,ε)(HL,j,+)

)]
. (3.15)

Substituting this lower bound into (3.5) and subsequently taking the limit ε↘ 0 in (3.2), we obtain the estimate

nL(E)

Ld
>

(2δρ−)θ(l)

4Cu,+δ

1

Ld

∑

j∈ΓlL

E
[

Tr
(
1(−∞,E](HL,j,−)− 1(−∞,E](HL,j,+)

)]
(3.16)

for Lebesgue-a.e. E ∈ R. Here, nL is the averaged finite-volume density of states ofH , i.e. the Lebesgue density of the
Lipschitz function E 7→ E [NL(E)], see (2.5). The expectation in (3.16) is effectively only a partial one, EΛc

l,j
, because

no other random variables are present any more. To deduce (3.16), we also used the fact that (1− fE,ε)(HL,j,±)
converges strongly to 1(−∞,E](HL,j,±) as ε↘ 0 and, hence, in trace class because the latter operators are of finite
rank, uniformly in ε. Moreover, the partial expectation EΛc

l,j
[ · ] was interchanged with the limit ε↘ 0 by dominated

convergence because

Tr ((1− fE,ε)(HL,j,±)) 6 Tr
(
1(−∞,E+1](HL,j,±)

)
6 Tr

(
1(−∞,E+1](H0,L)

)
. (3.17)

3.2 Dirichlet-Neumann bracketing.

For the time being we fix an arbitrary centre j ∈ ΓlL and an energy E ∈ I ⊂ ΣFMB. The potential of the Schrödinger
operatorsHL,j,± consists of a deterministic part 2δUj , respectively (1− 2δ)Uj , which is mainly supported on Λl,j , and
of a random part V cj mainly supported on ΛL,l,j := ΛL \ Λl,j . Leaking effects, caused by the range Ru of the single-
site potential u, may occur close to the boundary ∂Λl,j so that both potentials may be seen simultaneously there. In
the next step we will separate the two parts of the potential by a Dirichlet-Neumann bracketing argument. The arising
error will be controlled by Theorem 2.7. Dirichlet-Neumann bracketing gives

HL,j,− 6 (HL,j,−)
D
Λ+
l,j
⊕ (HL,j,−)

D
Λ+
L,l,j

,

HL,j,+ > (HL,j,+)
N
Λ+
l,j
⊕ (HL,j,+)

N
Λ+
L,l,j

.
(3.18)
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Here, the superscript D, respectively N , refers only to the additional Dirichlet, respectively Neumann, boundary
condition along ∂Λ+

l,j , where
Λ+
l,j :=

{
x ∈ Rd : |x− j|∞ < l/2 +Ru

}
⊂ ΛL (3.19)

is an enlarged version of the cube Λl,j and Λ+
L,l,j := ΛL \ Λ+

l,j its open complement. Hence, the expectation in (3.16)
is bounded from below according to

E
[

Tr
(
1(−∞,E](HL,j,−)− 1(−∞,E](HL,j,+)

)]

> E
[

Tr
(
1(−∞,E]

(
(HL,j,−)

D
Λ+
l,j

)
− 1(−∞,E]

(
(HL,j,+)N

Λ+
l,j

))]

+ E
[

Tr
(
1(−∞,E]

(
(HL,j,−)D

Λ+
L,l,j

)
− 1(−∞,E]

(
(HL,j,+)N

Λ+
L,l,j

))]
. (3.20)

The operators (HL,j,±)
D/N

Λ+
L,l,j

do not see the potential 2δUj , respectively (1− 2δ)Uj , any more due to the particular

choice of the enlarged cube Λ+
l,j . In fact, they are equal to the restrictions of H to ΛL \ Λ+

l,j with Dirichlet, respectively
Neumann, boundary conditions along the inner boundary ∂Λ+

l,j and Dirichlet boundary conditions along the outer
boundary ∂ΛL. By the definition of ΓlL we have dist(∂ΛL, ∂Λ+

l,j) > 3 so that we can apply Theorem 2.7 to the
expectation in the last line of (3.20). We conclude that this expectation is bounded by |∂Λ+

l,j | times a constant which
is uniform in L > l + 2Ru + 6, uniform in j ∈ ΓlL and uniform in E ∈ I . We combine this with (3.16) and obtain the
lower bound

nL(E)

Ld
>

(2δρ−)θ(l)bL,l
4Cu,+δ

{
1

|Λ+
l |
E
[
Tr
(
1(−∞,E]

(
HD,−

Λ+
l

)
− 1(−∞,E]

(
HN,+

Λ+
l

))]
− C

l

}

(3.21)

for all lengths L, l > 0 subject to l < L− 2Ru − 6 with a constant C > 0 that is uniform in l, L and E ∈ I . Here, we
introduced the notations Λ+

l := Λ+
l,0, bL,l := |ΓlL||Λ

+
l |/Ld,

HD,−
Λ+
l

:= (HL,0,−)
D
Λ+
l

and HN,+

Λ+
l

:= (HL,0,+)
N
Λ+
l

(3.22)

and used translation invariance in the derivation of (3.21), i.e. independence of j of the expectation in the middle line
of (3.20). For later use, we observe that, given any length l > 0 there exists a length L(l) such that

bL,l >
1

2
for every L > L(l). (3.23)

Now, we fix E0 ∈ I and 0 < ε < Cu,−/2 such that [E0 − ε, E0 + ε] ⊂ I . Then, the lower bound

E
[

Tr
(
1(−∞,E]

(
HD,−

Λ+
l

)
− 1(−∞,E]

(
HN,+

Λ+
l

))]

> E
[

Tr
(
1(−∞,E0−ε]

(
HD,−

Λ+
l

)
− 1(−∞,E0+ε]

(
HN,+

Λ+
l

))]
(3.24)

holds for all E ∈ [E0 − ε, E0 + ε]. We define U :=
∑

k∈Zd uk and observe the pointwise convergence

lim
l→∞

1

|Λ+
l |
E
[

Tr
(
1(−∞,Ẽ]

(
HD,−

Λ+
l

))]
= NH0+2δU (Ẽ),

lim
l→∞

1

|Λ+
l |
E
[

Tr
(
1(−∞,Ẽ]

(
HN,+

Λ+
l

))]
= NH0+(1−2δ)U (Ẽ)

(3.25)

for all Ẽ ∈ R, where NA(·) stands for the IDOS of the operator A. The limits in (3.25) exist because H0 and U are
both Zd-periodic and deviations from this periodic potential – both deterministic and random – in the box Λ+

l occur
only in a boundary layer whose volume scales with ld−1. The upper and lower covering conditions (2.2) imply

NH0+2δU (E0 − ε)−NH0+(1−2δ)U (E0 + ε)

> NH0+2δCu,+(E0 − ε)−NH0+(1−2δ)Cu,−(E0 + ε)

= N0

(
E0 − ε− 2δCu,+

)
−N0

(
E0 + ε− (1− 2δ)Cu,−

)

=: K(E0, ε, δ), (3.26)



Lower bound on the density of states 9

where N0(·) denotes the IDOS of H0. Now, we choose

δ = δε <
Cu,− − 2ε

2(Cu,+ + Cu,−)
. (3.27)

Here we used ε < Cu,−/2. This choice ensures that

E− := E0 + ε− (1− 2δε)Cu,− < E0 − ε− 2δεCu,+ =: E+ (3.28)

and, hence, that K(E0, ε) := K(E0, ε, δε) > 0. But we need strict positivity K(E0, ε) > 0. We claim that this follows
if I ⊂ Int(Σ0 + [0, Cu,−]), which we require from now on in addition. Indeed, in this case, there exists E0

0 ∈ Σ0 and
λ ∈ (0, 1) such that E0 = E0

0 + λCu,− and we have

E0
0 − (1− λ)Cu,− < E− < E+ < E0

0 + λCu,−. (3.29)

We need to distinguish three cases to finish the argument for strict positivity. (i) E0
0 ∈ (E−, E+). In this case,

the claim follows directly because Σ0 is the set of growth points of the IDOS N0. (ii) E0
0 ∈ [E+, E

0
0 + λCu,−).

In this case, we decrease the values of ε and δε and obtain again E0
0 ∈ (E−, E+) as in the first case. (iii) E0

0 ∈
(E0

0 − (1− λ)Cu,−, E−]. Again, by making ε and δε smaller, we obtainE0
0 ∈ (E−, E+), and the argument is complete.

Combining (3.25) and (3.26), we infer

lim
l→∞

1

|Λ+
l |
E
[

Tr
(
1(−∞,E0−ε]

(
HD,−

Λ+
l

)
− 1(−∞,E0+ε]

(
HN,+

Λ+
l

))]
> K(E0, ε). (3.30)

This inequality, the positivity of K(E0, ε) and (3.24) yield the existence of a length l0 = l0(E0, ε) such that for all
l > l0 and all E ∈ [E0 − ε, E0 + ε] we have

1

|Λ+
l |
E
[

Tr
(
1(−∞,E]

(
HD,−

Λ+
l

)
− 1(−∞,E]

(
HN,+

Λ+
l

))]
>

1

2
K(E0, ε). (3.31)

By possibly enlarging l0, we also ensure
C

l0
6

1

4
K(E0, ε), (3.32)

where C is the constant in (3.21). We define an initial length L0 := L0(E0, ε) := max
{
l0 + 2Ru + 5,L(l0)

}
and

conclude from (3.32), (3.31), (3.23) and (3.21) with l = l0 and δ = δε that

nL(E)

Ld
>

(2δερ−)θ(l0)

32Cu,+δε
K(E0, ε) > 0 (3.33)

for every L > L0 and every E ∈ [E0 − ε, E0 + ε]. By compactness, we cover I with finitely many intervals of the form
(E0 − ε, E0 + ε) ∩ I and we arrive at the claimed bound after integrating over E from E1 to E2.

4 Proof of Theorem 2.7

We fix an energy E ∈ I and let G := ΛL \ Λl(x0) be as in the hypothesis. We then define an enlargement of G by

G+ :=
{
x ∈ Rd : dist(x,G) < 1/2

}
, (4.1)

and denote a thickened inner boundary of G by

∂G− :=
{
x ∈ G+ : dist

(
x, ∂Λl(x0)

)
< 3
}
. (4.2)

We estimate the spectral shift function of the pair (HD
L,l, H

N
L,l) by

0 6 ξ(E,HN
L,l, H

D
L,l) = Tr

(
1(−∞,E](H

N
L,l)− 1(−∞,E](H

D
L,l)
)

6
∑

x∈∂G#−

∥∥∥χx
(
1(−∞,E](H

D
L,l)− 1(−∞,E](H

N
L,l)
)
χx

∥∥∥
1

+
∑

x∈∂G#,c−

∥∥∥χx
(
1(−∞,E](H

D
L,l)− 1(−∞,E](H

N
L,l)
)
χx

∥∥∥
1

=: I1 + I2, (4.3)
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where ‖ ··· ‖p denotes the Schatten-p-norm and, recalling the notation (3.3), we have set ∂G#,c
− := G#

+ \ ∂G
#
− . In the

following we treat the two contributions I1 and I2 separately. For I1 we apply the a priori estimate from Lemma A.1
with p = 1. It gives a non-random constant C1, uniform in E ∈ I , L and l, such that

‖χx1(−∞,E](H
D/N
L,l )χx‖1 6 C1 (4.4)

holds almost surely for all x ∈ Rd. Hence,

E[I1] 6 2C1|∂G#
−| 6 Cld−1 (4.5)

with a constant C > 0 uniform in E ∈ I and L, l.
For I2 we apply the inequality ‖A‖1 6 ‖A‖1/21/2‖A‖

1/2, which follows from ‖A‖1 =
∑

j µj(A) and the bound
µj(A) 6 ‖A‖, for singular values µj(A), and the a priori estimates from Lemma A.1 with p = 1/2. This yields almost
surely the upper bound

I2 6 C
1/2
1/2

∑

x∈∂G#,c−

∥∥∥χx
(
1(−∞,E](H

D
L,l)− 1(−∞,E](H

N
L,l)
)
χx

∥∥∥
1/2

(4.6)

with a non-random constant C1/2 that is uniform in E ∈ I , L and l. As in the Appendix we set E0 := infx∈Rd V0(x)

so that HD/N
L,l > E0 holds. Since E is not an eigenvalue of HD/N

L,l almost surely, we represent the Fermi projections
by an integration of the resolvents along a closed rectangular contour CE in the complex plane connecting the points
E + i, E0 − 1 + i, E0 − 1− i and E − i by straight line segments. We substitute these representations into (4.6) and
bound the norm of the integral by an integral of the norm. For any s ∈ (0, 1), we factor the norm into the product
of two powers s/2 and 1− s/2 of the norm, and bound the latter using the triangle inequality and the basic estimate
‖Rz(HD/N

L,l )‖1−s/2 6 | Im z|−(1−s/2). Altogether, this results in the bound

I2 6 (2C1/2)1/2
∑

x∈∂G#,c−

(∫

CE

|dz|
| Im(z)|1−s/2

∥∥∥χx
(
Rz(H

D
L,l)−Rz(HN

L,l)
)
χx

∥∥∥
s/2
)1/2

, (4.7)

where the notation
∫
CE |dz| stands for the sum of the absolute values of the four complex line integrals which make up

the contour CE .
Next, we apply the geometric resolvent equation to the norm in (4.7). To do so, we choose a switch function

ψ ∈ C2(G) with dist
(

supp(ψ), ∂Λl(x0)
)
> 1/4,

supp(∇ψ) ⊆
{
x ∈ G : 1/4 6 dist

(
x, ∂Λl(x0)

)
6 1/2

}
=: Ω, (4.8)

‖∇ψ‖∞ 6 8 and 1 > ψ > 1G\∂G− . In analogy to the definition of G+, we introduce the enlarged set Ω+ := {x ∈ Rd :
dist(x,Ω) < 1/2} and conclude

∥∥∥χx
(
Rz(H

D
L,l)−Rz(HN

L,l)
)
χx

∥∥∥

=
∥∥χxRz(HD

L,l)[−∆, ψ]Rz(H
N
L,l)χx

∥∥

6
∑

y∈Ω#+

∥∥χxRz(HD
L,l)χy

∥∥∥∥χy[−∆, ψ]Rz(H
N
L,l)χx

∥∥ (4.9)

for every x ∈ ∂G#,c
− . Here, the operator ψHN

L,l −HD
L,lψ = −[−∆, ψ] is a differential operator of order one acting only

on supp(∇ψ) and, hence, insensitive to any boundary condition of the involved Laplacian. Since dist
(

Ω#
+ , ∂G

#,c
−

)
>

2, we have dist
(
Λ1(x),Λ2(y)

)
> 1/2 for all x ∈ ∂G#,c

− and all y ∈ Ω#
+ . Hence the norms involving [−∆, ψ] on the

right hand side of (4.9) can be estimated in a standard manner, see, for example, [35, Lemma 2.5.3] and the proof of
[35, Lemma 2.5.2]. This yields a constant c, which is uniform in E ∈ I , L and l, such that

∥∥χy[−∆, ψ]Rz(H
N
L,l)χx

∥∥ 6 c
∥∥1Λ2(y)Rz(H

N
L,l)χx

∥∥. (4.10)

Combining (4.7), (4.9) and (4.10), we get

I2 6 c′
∑

y∈Ω#+
x∈∂G#,c−

(∫

CE

|dz|
| Im(z)|1−s/2

‖χxRz(HD
L,l)χy‖s/2‖1Λ2(y)Rz(H

N
L,l)χx‖s/2

)1/2

(4.11)
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with c′ := cs/4(2C1/2)1/2. Next, we take the expectation on both sides of (4.11), apply Jensen’s inequality to the
concave square root function and the Cauchy-Schwarz inequality to the expectation. This gives

E [I2] 6 c′
∑

y∈Ω#+
x∈∂G#,c−

(∫

CE

|dz|
| Im(z)|1−s/2

E
[
‖1Λ2(y)Rz(H

N
L,l)χx

∥∥s]1/2

× E
[
‖χxRz(HD

L,l)χy‖s
]1/2

)1/2

. (4.12)

The expectation in the second line of (4.12) decays exponentially in |x− y|. This follows from the fractional moment
bounds (2.8) on the vertical parts of the integration contour CE because E,E0 − 1 ∈ ΣFMB. On the horizontal parts
of CE we use the Combes-Thomas estimate [15, Cor. 1] for deterministic Schrödinger operators. Even though this
result is formulated for Schrödinger operators on L2(Rd), the argument extends to Schrödinger operators on L2(G)
for arbitrary G ⊆ Rd open – see also [33]. Thus, we find that there exist finite constants C,C ′, C ′′ > 0, all uniform in
E ∈ I , L and l, such that

E [I2] 6 C
∑

y∈Ω#+
x∈∂G#,c−

e−µ|x−y|

(∫

CE

|dz|
| Im(z)|1−s/2

E
[
‖1Λ2(y)Rz(H

N
L,l)χx

∥∥s]1/2
)1/2

6 C ′
∑

y∈Ω#+

∑

x∈Zd
e−µ|x−y|

6 C ′′ ld−1. (4.13)

For the second inequality in (4.13) we covered Λ2(y) by 2d boxes of side-length 1 and used the a priori bound

sup
x,y∈Rd, E′∈I, η 6=0

E
[
‖χyRE′+iη(HN

L,l)χx
∥∥s] 6 C̃ <∞ (4.14)

with a constant C̃ that does not depend on L or l. Its validity follows from [1, Lemma 3.3], see also [6, Lemma 4].
The bound is stated there for operators with Dirichlet boundary conditions, but it generalises to mixed Dirichlet and
Neumann boundary conditions, as needed for (4.14). To see that such a priori bounds are insensitive to the boundary
condition we note that their proofs rely on two-parameter spectral averaging for the resolvent Rz(A) of a maximally
dissipative operator A and Im(z) > 0, see Lemma 3.1 and Appendix C in [1] or Lemma 3 and Appendix A.3 in [6].
Finally, if (4.14) holds for z = E′ + iη with η > 0, then it also holds with η < 0 by taking the adjoint.
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A A priori bounds: Supertrace-class conditions

The deterministic Lemma A.1 below is essential for the proof of Theorem 2.7. We prove it here for completeness and
convenience of the reader. It is known for operators with Dirichlet boundary conditions, see [1, App. A] and [6]. We
closely follow the approach in [6].

We consider the following deterministic Schrödinger operator

(D) H := −∆ + V0 + V with two bounded potentials V0, V ∈ L∞(Rd) such that 0 6 V 6M for some finite
constant M > 0.
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Let E0 := infx∈Rd V0(x) so that H > E0. As before, we denote by HD
L,l, respectively HN

L,l, the restriction of H
to ΛL \ Λl(x0) with Dirichlet, respectively Neumann, boundary conditions along the inner boundary ∂Λl(x0) and
Dirichlet boundary conditions along the outer boundary ∂ΛL. As we have to deal with Schatten-p classes for 0 < p 6 1
we note that the (generalised) Hölder inequality for Schatten classes remains true for Hölder exponents p1, ..., pn > 0
subject to p−1

1 + ...+ p−1
n = p−1. Moreover the “triangle-like” inequality

‖A+B‖pp 6 ‖A‖pp + ‖B‖pp (A.1)

holds for compact operators A,B and p ∈ (0, 1], see [26, Thm. 2.8].

Lemma A.1. Assume (D). Let p > 0, I ⊂ R compact and M > 0 fixed. Then there exists a finite constant Cp,
which depends on I only through max I , such that for ? ∈ {D,N}, for all x, y ∈ Rd, for all measurable g : R→ C
with |g| 6 1 and supp(g) ⊆ I , for all L, l > 0 and x0 ∈ ΛL such that Λl(x0) ⊂ ΛL and for all measurable potentials
V : Rd → [0,M ] we have the estimate

‖χxg(H?
L,l)χy‖p 6 Cp. (A.2)

The above Lemma follows, up to some iteration procedure, from the following Schatten-class Combes-Thomas
estimate.

Lemma A.2. Assume (D). Let p > d/2, E ∈ (−∞, E0) and M > 0. Then, there exist finite constants Cp,E , µp,E > 0

such that for all x, y ∈ Rd, for all L, l > 0 and x0 ∈ ΛL such that Λl(x0) ⊂ ΛL and for all measurable potentials
V : Rd → [0,M ] we have the estimate

‖χx(H?
L,l − E)−1χy‖p 6 Cp,E e

−µp,E |x−y|. (A.3)

Proof. Let E ∈ (−∞, E0), set G := ΛL \ Λl(x0) for fixed L, l > 0 and x0 ∈ ΛL such that Λl(x0) ⊂ ΛL. As before,
let G#

+ := {n ∈ Zd : dist(n,G) < 1/2}. For n ∈ G#
+ we introduce the rectangular box Qn := Λ1(n) ∩G and the

Neumann Laplacian −∆N
Qn

on Qn. Dirichlet-Neumann bracketing

HD
L,l > HN

L,l > −∆N
L,l + E0 >

⊕

n∈G#+

(
−∆N

Qn
+ E0

)
(A.4)

and [22, (2.21) in Sec. VI.2] then imply the bound
∥∥∥
( ⊕

n∈G#+

(−∆N
Qn

+ E0 − E)1/2
)

(H?
L,l − E)−1/2

∥∥∥ 6 1. (A.5)

We set Ẽ := E0 − E > 0. Hence, using Hölder’s inequality, we estimate for x ∈ Rd and fixed p′ > 1 (to be determined
later)

‖χx(H?
L,l − E)−1/2‖p′ 6

∥∥∥χx
( ⊕

n∈G#+

(−∆N
Qn

+ Ẽ)−1/2
)∥∥∥

p′

6
∑

n∈G#+

∥∥χx(−∆N
Qn

+ Ẽ)−1/2
∥∥
p′
. (A.6)

Since the cardinality of {n ∈ Zd : Qn ∩ Λ1(x) 6= ∅} is at most 2d, we conclude

‖χx(H?
L,l − E)−1/2‖p′ 6 2d max

n∈Zd:
Qn∩Λ1(x)6=∅

∥∥(−∆N
Qn

+ Ẽ)−1/2
∥∥
p′
. (A.7)

For any rectangular box Λ̃ :=
d

×
j=1

(−Lj/2, Lj/2) with side-lengths Lj > 0 for 1 6 j 6 d, the eigenvalues of −∆N

Λ̃
are

given by Ek(Λ̃) :=
∑d

j=1

(
πkj
Lj

)2

and indexed by k := (k1, ...kd) ∈ Nd0. Since Qn is a rectangular box of the above
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form with Lj 6 1, the eigenvalues Ek(Λ̃) are monotone decreasing in the side-lengths Lj and the Neumann Laplacian
is translation invariant, we infer from (A.7) that

‖χx(H?
L,l − E)−1/2‖p

′

p′ 6 (2d)p
′∥∥(−∆N

Λ1 + Ẽ)−1/2
∥∥p′
p′

= (2d)p
′ ∑

k∈Nd0

(
Ek(Λ1) + Ẽ

)−p′/2
=: Cp′ . (A.8)

Now, let p > d/2 and fix θ ∈ (0, p− d/2), whence p′ := 2(p− θ) > d. We estimate

∥∥χx(H?
L,l − E)−1χy

∥∥p
p
6
∥∥χx(H?

L,l − E)−1χy
∥∥p−θ
p−θ

∥∥χx(H?
L,l − E)−1χy

∥∥θ

6 ‖χx(H?
L,l − E)−1/2‖p−θ2(p−θ)‖(H

?
L,l − E)−1/2χy‖p−θ2(p−θ)

×
∥∥χx(H?

L,l − E)−1χy
∥∥θ

6 C2(p−θ)
∥∥χx(H?

L,l − E)−1χy
∥∥θ, (A.9)

where we used (A.8) in the last step. The Combes-Thomas estimate for operator norms (see e.g. [35, Thm. 2.4.1]),
which also applies to Schrödinger operators with mixed boundary conditions, completes the proof.

Proof of Lemma A.1. We use the abbreviation H := H?
L,l. Without loss of generality we assume 0 < p 6 1 (because

‖ ··· ‖p 6 ‖ ··· ‖1 for p > 1). Let m ∈ N such that m > d/(2p) and observe H > E0. We insert the m-th power of the
resolvent on the l.h.s. of (A.2) and estimate using Hölder’s inequality

∥∥χxg(H)χy
∥∥p
p

= ‖χxg(H)(H − E0 + 1)m(H − E0 + 1)−mχy‖pp
6 ‖χxg(H)(H − E0 + 1)m‖p ‖(H − E0 + 1)−mχy‖pp
6 C‖(H − E0 + 1)−mχy‖pp. (A.10)

The last estimate holds true because g(H)(H − E0 + 1)m is a self-adjoint operator with operator norm bounded by
(sup I − E0 + 1)m =: C1/p. Next we set ym+1 := y and estimate with (A.1)

‖(H − E0 + 1)−mχy‖pp =
∥∥∥
( ∑

y1∈Zd
χy1

)
(H − E0 + 1)−1 · · ·

× · · ·
( ∑

ym∈Zd
χym

)
(H − E0 + 1)−1χym+1

∥∥∥
p

p

6
∑

y1,...,ym∈Zd

∥∥∥
m∏

l=1

(
χyl(H − E0 + 1)−1χyl+1

)∥∥∥
p

p
. (A.11)

Using Hölder’s inequality for Schatten-p classes, we obtain the inequality

∥∥∥
m∏

l=1

(
χyl(H − E0 + 1)−1χyl+1

)∥∥∥
p

p
6

m∏

l=1

∥∥χyl(H − E0 + 1)−1χyl+1
∥∥p
pm

6C ′
m∏

l=1

e−µ|yl−yl+1|, (A.12)

where the last estimate is due to Lemma A.2 applied with E = E0 − 1. Inserting this into (A.11) and repeatedly using

∑

y2∈Zd
e−µ|y1−y2|e−µ|y2−y3| 6 C ′′e−µ/2|y1−y3|, (A.13)

we conclude from (A.10) that ∥∥χxg(H)χy
∥∥p
p
6 Cp (A.14)

with a constant Cp which is independent of all the parameters stated in the lemma.
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[8] Combes, J.-M., F. Germinet and A. Klein. “Generalized eigenvalue-counting estimates for the Anderson model.”
J. Stat. Phys. 135 (2009): 201–216.

[9] Combes, J.-M., F. Germinet and A. Klein. “Poisson statistics for eigenvalues of continuum random Schrödinger
operators.” Anal. PDE 3 (2010): 49–80. Erratum: Anal. PDE 7 (2014): 1235–1236.

[10] Combes, J.-M., P. D. Hislop and F. Klopp. “An optimal Wegner estimate and its application to the global
continuity of the integrated density of states for random Schrödinger operators.” Duke Math. J. 140 (2007):
469–498.

[11] Combes, J.-M., P. D. Hislop and F. Klopp. “Some new estimates on the spectral shift function associated with
random Schrödinger operators.” In: Probability and mathematical physics. CRM Proc. Lecture Notes 42, 85–95.
Providence, RI: Amer. Math. Soc., 2007.

[12] Combes, J.-M., P. D. Hislop and S. Nakamura. “The Lp-theory of the spectral shift function, the Wegner estimate,
and the integrated density of states for some random operators.” Commun. Math. Phys. 218 (2001): 113–130.

[13] Dietlein, A., M. Gebert and P. Müller. “Bounds on the effect of perturbations of continuum random Schrödinger
operators and applications.” (2017): preprint arXiv:1701.02956.

[14] Doi, S., A. Iwatsuka and T. Mine. “The uniqueness of the integrated density of states for the Schrödinger operators
with magnetic fields.” Math. Z. 237 (2001): 335–371.

[15] Germinet, F. and A. Klein. “Operator kernel estimates for functions of generalized Schrödinger operators.” Proc.
Amer. Math. Soc. 131 (2003): 911–920.

[16] Germinet, F. and A. Klein. “New characterizations of the region of complete localization for random Schrödinger
operators.” J. Stat. Phys. 122 (2006): 73–94.

[17] Hislop, P. D. and P. Müller. “A lower bound for the density of states of the lattice Anderson model.” Proc. Amer.
Math. Soc. 136 (2008): 2887–2893.

[18] Hislop, P. D. and P. Müller. “The spectral shift function for compactly supported perturbations of Schrödinger
operators on large bounded domains. Proc. Amer. Math. Soc. 138 (2010): 2141–2150.

[19] Hundertmark, D., R. Killip, S. Nakamura, P. Stollmann and I. Veselić. “Bounds on the spectral shift function and
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[36] Veselić, I. Existence and regularity properties of the integrated density of states of random Schrödinger operators.
Lecture Notes in Mathematics 1917. Berlin: Springer, 2008.

[37] Wegner, F. “Bounds on the density of states in disordered systems.” Z. Phys. B 44 (1981): 9–15.

[38] Yafaev, D. R. Mathematical scattering theory. General theory. Providence, RI: Amer. Math. Soc., 1992.


