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Abstract. We study purely magnetic Schrödinger operators in two-dimensions (x, y) with
magnetic fields b(x) that depend only on the x-coordinate. The magnetic field b(x) is assumed
to be bounded, there are constants 0 < b− < b+ < ∞ so that b− 6 b(x) 6 b+, and outside

of a strip of small width −ε < x < ε, where 0 < ε < b
−1/2
− , we have b(x) = b±x for ±x > ε.

The case of a jump in the magnetic field at x = 0 corresponding to ε = 0 is also studied. We
prove that the magnetic field creates an effective barrier near x = 0 that causes edge currents
to flow along it consistent with the classical interpretation. We prove lower bounds on edge
currents carried by states with energy localized inside the energy bands of the Hamiltonian.
We prove that these edge current-carrying states are well-localized in x to a region of size

b
−1/2
− , also consistent with the classical interpretation. We demonstrate that the edge currents

are stable with respect to various magnetic and electric perturbations. These lower bounds
on the edge current hold for all time. For a family of perturbations compactly supported in
the y-direction, we prove that the time asymptotic current exists and satisfies the same lower
bound.

Contents

1. Introduction: Magnetic barriers and edge currents 2
1.1. Relation to edge conductance 3
1.2. Contents 4
1.3. Notation 4
1.4. Acknowledgements 4
2. Preliminary analysis of the sharp Iwatsuka model with two constant magnetic fields 4
3. Estimates on the derivative of the band functions 5
3.1. Positivity of the derivative of the band functions 6
3.2. A positive lower bound on the derivative of the band function 7
4. Existence and localization of edge currents 11
4.1. Edge states carrying a current 11
4.2. Localization of the edge currents 12
5. Smooth Iwatsuka Hamiltonians with positive magnetic fields 16
5.1. Analysis of the band functions 17
5.2. Existence of edge currents 19
6. Perturbations of Iwatsuka Hamiltonians: Stability of edge currents 23
7. Persistence of edge currents in time: Asymptotic velocity 25

Version of October 3, 2013.



2 P. D. HISLOP AND E. SOCCORSI

References 29

AMS 2000 Mathematics Subject Classification: 35J10, 81Q10, 35P20.
Keywords: Schrödinger operators, magnetic field, magnetic edge states, magnetic barrier,
asymptotic velocity.

1. Introduction: Magnetic barriers and edge currents

Quantum Hall systems describe charge transport in bounded or unbounded regions in
the plane in the presence of a transverse magnetic field. The typical Hall system is described
by an electron moving in the plane subject to a constant transverse magnetic field. The Hall
conductance is quantized [1, 2] and is stable under perturbations by random potentials. Con-
fined systems, such as motion in a half-plane or a strip are also interesting as a current flowing
along an edge is created. Confinement may be obtained by Dirichlet boundary conditions
or an electrostatic potential barrier. The edge currents in these situations were explored in
[3, 8, 9, 10]. In this article, we are interested in edge currents created by purely magnetic
barriers.

The spectral properties of magnetic Schrödinger operators of the form H = (−i∇−A)2

on L2(R2) have been of interest for many years. It is known that they depend only on the
transverse magnetic field given by the third component of the cross product: b(x, y) = (∇ ×
A(x, y))3. The case when b(x, y) = b0 is the Landau Hamiltonian. The spectrum is pure
point consisting of infinitely-degenerate eigenvalues En(b0) = (2n + 1)b0, for n = 0, 1, 2, . . .,
the Landau levels. Many works consider the case where the magnetic field is asymptotically

constant b(x, y) → b0 as r =
√
x2 + y2 → ∞. If b0 = 0, then the essential spectrum is

the half-line [0,∞) (see, for example, [13]). If, in addition, the magnetic field is short-range
|b(x, y)| ∼ |(x, y)|−1−δ, for any δ > 0, then the spectrum is purely absolutely continuous (see,
for example, [11]).

Iwatsuka [12] studied the case when the magnetic field is not constant at infinity. In
particular, he considered the case when b(x, y) = b(x) is a function of x only. He supposed that
b(x) is bounded, 0 < M− 6 b(x) 6 M+ < ∞. We are interested in his model for which b(x)
has different limits as x → ±∞. Under these conditions, Iwatsuka proved that the spectrum
is absolutely continuous. Several years later, the transport properties of purely magnetic
Schrödinger operators on L2(R2) were investigated by physicists Reijniers and Peeters [17].
They supposed that b(x) assumes constant value b− for x < 0 and b+ for x > 0. They argued
that this magnetic discontinuity creates an effective edge and that currents flow along the edge.
This is the magnetic analog of the barriers created by Dirichlet bound conditions along x = 0
or a confining electrostatic potential filling the half-space x < 0 described in the paragraph
above. Partially motivated by [17], Dombrowski, Germinet, and Raikov [6] studied the edge
conductance for generalized Iwatsuka models. We discuss this in section 1.1.

In this article, we prove the existence, localization, and stability of magnetic edge cur-
rents. We consider a family of magnetic fields b(x) with the following properties. We first
consider an Iwatsuka-type model with a sharp transition at x = 0. Let 0 < b− < b+ <∞ and
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b(x) := b± for x ∈ R∗± := R±\{0}. Following the notation of [6], we set

β(x) :=

∫ x

0
b(s)ds = b±x, x ∈ R∗±, (1.1)

and consider the two-dimensional vector potential A(x, y) = (A1(x, y), A2(x, y)) defined by
A1(x, y) := 0 and A2(x, y) := β(x) generating this magnetic field.

Let px := −i∂x and py := −i∂y be the two momentum operators. The two-dimensional
magnetic Schrödinger operator H(A) is defined on the dense domain C∞0 (R2) ⊂ L2(R2) by

H = H(A) := (−i∇−A)2 = p2
x + (py − β(x))2. (1.2)

We will call the Hamiltonian in (1.2) the sharp Iwatsuka model. We study the edge current
flowing along x = 0 created by the discontinuity in the magnetic field there. We prove the
existence of states carrying a nonzero edge current. We show that the current is localized in

a neighborhood about x = 0 with width the order of b
−1/2
− . We consider a smoothed version

of b(x) in section 5 for which the magnetic field is bounded 0 < b− 6 b(x) 6 b+ < ∞, with
b(x) = b± for ±x > ε > 0, for some ε > 0. In order to preserve the localization of edge

currents, we take ε < b−
−1/2. Finally, we prove the currents are stable with respect to various

families of magnetic and electric perturbations.
In a companion article with N. Dombrowski [7], we study the Iwatsuka model for which

b− = −b, and b+ = b > 0. The Hamiltonian for this model is symmetric with respect to
the reflection x → −x and the band functions have different asymptotics as k → ±∞. A
characteristic of the model is the existence of so-called ‘snake orbits’ (see [17]) along the
magnetic edge x = 0.

1.1. Relation to edge conductance. As mentioned above, Dombrowski, Germinet, and
Raikov [6] studied the quantization of the Hall edge conductance for a generalized family
of Iwatsuka models including the model discussed here. Let us recall that the Hall edge
conductance is defined as follows. We consider the situation where the edge lies along the
y-axis as discussed above. Let I ⊂ R be a compact energy interval. We choose a smooth
increasing function g so g(s) = s on I = [a, b] and 0 6 g 6 1. It follows that g′|[a,b] = 1. We can

arrange it so there is an σ > 0 so that supp g′ ⊂ [a−σ, b+σ]. Let χ = χ(y) be an x-translation
invariant smooth function with supp χ′ ⊂ [−1/2, 1/2]. The edge Hall conductance is defined
by

σIe(H) = −2πtr (g′(H)i[H,χ]), (1.3)

whenever it exists. The edge conductance measures the current across the axis y = 0 with
energies below the energy interval I.

One of the main results of [6] in this setting is the quantization of edge currents for the
Iwatsuka model. Roughly speaking, for a fixed energy level E, the edge conductance at E
counts the number of Landau levels below E carrying an edge current. Applied to the model
studied here, for which b(x) → b± as x → ±∞, with 0 < b− < b+, they proved [6, Corollary
2.3] for I ⊂ R, any energy interval I ⊂ (−∞, b+) ∩ ((2n − 1)b−, (2n + 1)b−) 6= ∅, for some
positive integer n > 1, that the edge conductance is quantized: σIe(H) = n. We complement
this result as follows. We prove that there are n nonempty intervals ∆j , j = 1, . . . , n located
below I and a finite constant c > 0, see Theorem 4.1, so that for any state ψ = P(∆j)ψ, where
P(∆j) is the spectral projector for H and interval ∆j , we have

〈ψ, vyψ〉 > cb1/2− ‖ψ‖2 > 0, vy := py − β(x). (1.4)
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This indicates that such a state ψ carries a nontrivial edge current.

1.2. Contents. We recall the basic characteristics of the sharp Iwatsuka model in section 2
and present the standard fiber decomposition. The band functions are studied extensively in
section 3. The main result, Theorem 3.1, provides a quantitative lower bound on the derivative
of any band function for quasi-momentum k in specified intervals. Edge currents and their
spatial localization around x = 0 are studied in section 4. In section 5, we treat the case
of a smoothed magnetic field that is piecewise constant outside of an interval [−ε, ε], for any

0 < ε < C0b
−1/2
− . We prove the existence and localization of edge currents in this case also.

In section 6, we prove the stability of edge currents under certain families of magnetic and
electric perturbations. We discuss lower bounds on the time-evolved edge current and show
that they are stable under time evolution in section 7. In addition, we prove that for a class
of perturbations that have compact support in the y-direction, the asymptotic velocity exists
and is bounded below indicating the existence of edge currents for all time.

1.3. Notation. We write 〈·, ·〉 and ‖ · ‖ for the inner product and norm on L2(R2). The
functions are written with coordinates (x, y), or, after a partial Fourier transform with respect
to y, we work with functions f(x, k) ∈ L2(R2). We often view these functions f(x, k) on
L2(Rx) as parameterized by k ∈ R. In this case, we also write 〈f(·, k), g(·, k)〉 and ‖f(·, k)‖ for
the inner product and related norm on L2(Rx). So whenever an explicit dependance on the
parameter k appears, the functions should be considered on L2(Rx). We indicate explicitly
in the notation, such as ‖ · ‖X , for X = L2(R±), when we work on those spaces. We write
‖ · ‖∞ for ‖ · ‖L∞(X) for X = R,R±, or R2. For a subset X ⊂ R, we denote by X∗ the set
X∗ := X\{0}.

1.4. Acknowledgements. PDH thanks the Centre de Physique Théorique, CNRS, Luminy,
Marseille, France, for its hospitality. PDH was partially supported by the Université du Sud
Toulon-Var, La Garde, France, and National Science Foundation grant 11-03104 during the
time part of the work was done. ES thanks the University of Kentucky, Lexington, KY, USA,
where part of this work was done, for its warm welcome.

2. Preliminary analysis of the sharp Iwatsuka model with two constant
magnetic fields

Since the Hamiltonian defined in (1.1)–(1.2) is invariant with respect to translations in
the y-direction, it can be reduced to a family of parameterized Schrödinger operators on L2(R).
Let F denote the partial Fourier transform with respect to y,

(Fu)(x, k) := û(x, k) =
1√
2π

∫
R
e−iyku(x, y)dx, (x, k) ∈ R2. (2.1)

The operator H admits a partial Fourier decomposition with respect to the y-variable, and
the Hilbert space L2(R2) can be expressed as a constant fiber direct integral over R with fibers
L2(R),

FHF∗ =

∫ ⊕
R
h(k)dk (2.2)

with
h(k) := p2

x + V (x, k) on L2(R), V (x, k) := (k − β(x))2. (2.3)

In light of (1.1), the potential V (x, k), k ∈ R, is unbounded as |x| goes to infinity, hence
h(k) has a compact resolvent. Let {ωj(k)}∞j=1 be the increasing sequence of the eigenvalues of
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the operator h(k), k ∈ R. Since all the eigenvalues ωj(k) are simple (see [9][Proposition A2]),
they depend analytically on k ∈ R (see [14] or [16]). We refer to the functions ωj(k) as the
band functions.

Let us introduce two Landau Hamiltonians on R2 each with a constant magnetic field
b− or b+:

h±(k) := p2
x + V±(x, k), V±(x, k) := (k − b±x)2. (2.4)

We then have the simple comparison for the operators

h−(k) 6 h(k) 6 h+(kb+/b−), for k 6 0, (2.5)

and
h−(kb−/b+) 6 h(k) 6 h+(k), for k > 0. (2.6)

These inequalities and the mini-max principle imply that

(2j − 1)b− 6 ωj(k) 6 (2j − 1)b+, j ∈ N∗. (2.7)

Let {ψj(k)}∞j=1 be the L2(R)-normalized eigenfunctions of h(k) satisfying

(h(k)ψj)(x, k) = ωj(k)ψj(x, k), x ∈ R. (2.8)

We choose all ψj(k) to be real and the ground state eigenfunction to satisfy ψ1(x, k) > 0, for
x ∈ R and k ∈ R. Since V (., k) ∈ C0(R) ∩ C∞(R∗), the functions ψj(., k) ∈ C2(R) ∩ C∞(R∗),
j ∈ N∗, from [9][Proposition A1]. Moreover, the orthogonal projections Pj(k) := |ψj(k)〉〈ψj(k)|
, j ∈ N∗, depend analytically on k (see [14] or [16]).

Similarly, we write {ψ±j (k)}+∞j=1 the L2(R)-normalized and real analytic eigenfunctions of

the Landau Hamiltonians h±(k), with ψ±1 (x, k) > 0, for x ∈ R and k ∈ R.

3. Estimates on the derivative of the band functions

We first derive two useful expressions for the derivative of the band functions. Fix
j ∈ N∗. According to the Feynman-Hellmann Theorem, we have

ω′j(k) =

∫
R

(
dh

dk

)
(k)ψj(x, k)ψj(x, k) dx = 2

∫
R

(k − β(x))ψj(x, k)2 dx, (3.1)

since d
dkh(k) = ∂

∂kV (x, k) = 2(k − β(x)). Hence, it follows that

ω′j(k) = −
∑
ζ=+,−

b−1
ζ

∫
Rζ

∂

∂x
(k − bζx)2ψj(x, k)2dx

=
∑
ζ=+,−

b−1
ζ

(
ζk2ψj(0, k)2 + 2

∫
Rζ

(k − bζx)2ψj(x, k)ψ′j(x, k)dx

)
, (3.2)

by integrating by parts. We used the fact that limx→±∞ |V (x, k)|ψj(x, k)2 = 0. This follows
from the decay of the eigenfunctions established in the proof of Theorem 4.5. Putting (2.8)
and (3.2) together we get that

ω′j(k) = −(b−1
− − b−1

+ )k2ψj(0, k)2

+2
∑
ζ=+,−

b−1
ζ

∫
Rζ

(ωj(k)ψj(x, k) + ψ′′j (x, k))ψ′j(x, k)dx

= (b−1
− − b−1

+ )
(
(ωj(k)− k2)ψj(0, k)2 + ψ′j(0, k)2

)
. (3.3)
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3.1. Positivity of the derivative of the band functions. We prove that the bands are
monotone increasing functions of k. Since

ωj(k)ψj(0, k)2 = 2ωj(k)

∫ 0

−∞
ψj(x, k)ψ′j(x, k)dx

= 2

∫ 0

−∞
h(k)ψj(x, k)ψ′j(x, k)dx, (3.4)

we see that

ωj(k)ψj(0, k)2 = 2

∫ 0

−∞
(−ψ′′j (x, k) + (b−x− k)2ψj(x, k))ψ′j(x, k)) dx

= −ψ′j(0, k)2 +

∫ 0

−∞
(b−x− k)2(ψj(x, k)2)′dx

= −ψ′j(0, k)2 − 2b−

∫ 0

−∞
(b−x− k)ψj(x, k)2dx+ k2ψj(0, k)2,

by standard computations and provided limx→−∞(b−x− k)2ψj(x, k)2 = 0. As a consequence,
we have

(ωj(k)− k2)ψj(0, k)2 + ψ′j(0, k)2 = −2b−

∫ 0

−∞
(b−x− k)ψj(x, k)2dx.

Substituting this into the right side of (3.3), we obtain

ω′j(k) = 2

(
b+
b−
− 1

)∫ 0

−∞
(k − b−x)ψj(x, k)2dx. (3.5)

Note that for k > 0, the right side of (3.5) is positive.
In order to get an expression that is positive for k < 0, we start in a similar manner

from the identity

ωj(k)ψj(0, k)2 = −2ωj(k)

∫ +∞

0
ψj(x, k)ψ′j(x, k)dx = −2

∫ +∞

0
h(k)ψj(x, k)ψ′j(x, k)dx,

and we obtain in the same way that

(ωj(k)− k2)ψj(0, k)2 + ψ′j(0, k)2 = 2b+

∫ +∞

0
(b+x− k)ψj(x, k)2dx,

and thus

ω′j(k) = 2

(
b+
b−
− 1

)∫ +∞

0
(b+x− k)ψj(x, k)2dx, (3.6)

with the aid of (3.3). Note that for k < 0, the right side of (3.6) is positive.
Combining these two results, we obtain the following lemma.

Lemma 3.1. For every j ∈ N∗ and for every k ∈ R, the derivative of the band function is
positive: ω′j(k) > 0.

As the band functions k 7→ ωj(k), j ∈ N∗, are non constant from Lemma 3.1, the
spectrum of H is purely absolutely continuous according to [16][Theorem XIII.86]. Moreover
we have limk→±∞ ‖(h(k)− (2j − 1)b±)ψ±j (., k)‖ = 0, directly from (3.14). From this and (2.7)
then follows that

lim
k→±∞

ωj(k) = (2j − 1)b±, j ∈ N∗, (3.7)
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Figure 1. Approximated shape of the band functions k 7→ ωj(k), for j =
1, 2, 3, of the sharp Iwatsuka Hamiltonian with b+ = 2b− = 2.

from which we get that

σ(H) = σac(H) =
⋃
j∈N∗

ωj(R) =
⋃
j∈N∗

[(2j − 1)b−, (2j − 1)b+].

3.2. A positive lower bound on the derivative of the band function. We next obtain a
strictly positive lower bound on the derivative ω′j(k) for k in selected intervals in R. The edge
currents are carried by states in the range of the spectral projector for H and intervals ∆j in
the energy bands [(2j−1)b−, (2j−1)b+], obtained as the range of ωj(k), for k ∈ R. In general,
these bands may overlap as seen from (2.7). In the next lemma, we fix an integer n and show
that if b± satisfy a certain relation, then all the bands {ωj(k) | k ∈ R}, for j = 1, 2, . . . , n

do not overlap. This allows us to characterize ω−1
j (∆j), for certain intervals ∆j ⊂ Ran ωj .

Finally, we use the fact that h(k) is close to h±(k) for k ∈ R±, respectively, and that the
eigenfunctions and eigenvalues of h±(k) are well known.

Proposition 3.1. Let b− > 0, b+ = rb− with r ∈ (1, 31/2], and let n denote the unique positive
integer satisfying (

2n+ 3

2n+ 1

)1/2

< r 6

(
2n+ 1

2n− 1

)1/2

. (3.8)

Fix j ∈ N∗n := {1, 2, . . . , n} and consider ∆j := ((2j − 1 + δj)b−, (2j − 1 − δj)b+) where δj
verifies

0 < δj < (2j − 1)

(
r − 1

r + 1

)
< 1/2. (3.9)

Then

• Disjointness of inverse images: ω−1
l (∆j) = ∅, for every l ∈ N∗\{j}.
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• Positivity of the derivative: For each j ∈ N∗n := {1, 2, . . . , n}, there exists a constant
cj > 0, independent of k, b± and δj, such that we have

ω′j(k) > cjδ
3
j

(
r − 1

r3

)
b
1/2
− , k ∈ ω−1

j (∆j). (3.10)

Proof. 1. Proof of part 1. We first note that δj fulfilling the first and second inequalities in
(3.9) satisfies δj ∈ (0, 1/2). Indeed, we have

δj < (2j − 1)(r2 − 1)/(r+ 1)2 < (2j − 1)((2n+ 1)/(2n− 1)− 1)/(((2n+ 3)/(2n+ 1))1/2 + 1)2,

from (3.8)-(3.9), hence δj < 2

((
2n+3
2n+1

)1/2
+ 1

)−2 (
2j−1
2n−1

)
< 1/2. We next consider ω−1

l (∆j)

as described in the proposition. Due to (3.8), we have

b− >

(
2n− 1

2n+ 1

)1/2

b+ >

(
2j − 1

2j + 1

)1/2

b+,

since j 6 n. Hence, it follows from this and (2.7) that

inf
k∈R

ωj+1(k) = (2j + 1)b− > (2j − 1)b+.

This yields ω−1
l (∆j) = ∅ for l > j + 1. Similarly, for n > j > 2, it holds true that

sup
k∈R

ωj−1(k) = (2j − 3)b+ 6 (2j − 3)

(
2n+ 1

2n− 1

)1/2

b− 6 (2j − 3)

(
2j − 1

2j − 3

)1/2

b− < (2j − 1)b−,

so that ω−1
l (∆j) = ∅ for l ∈ N∗j−1.

2. Proof of part 2. To prove the remaining part of this proposition, and the lower
bound (3.10), we examine the two cases k 6 0 and k > 0 separately.

Case: k 6 0. Setting α−j,l(k) := 〈ψj(k), ψ−l (k)〉 for all l ∈ N∗, and using the operator inequality

h(k) > h−(k), which holds true for all k 6 0, we get

0 6 〈ψj(k), (h(k)− h−(k))ψj(k)〉 =
∑
l>1

(ωj(k)− (2l − 1)b−)|α−j,l(k)|2,

and hence

j∑
l=1

(ωj(k)− (2l − 1)b−)|α−j,l(k)|2 >
∑
l>j+1

((2l − 1)b− − ωj(k))|α−j,l(k)|2

> ((2j + 1)b− − ωj(k))
∑
l>j+1

|α−j,l(k)|2.

From this and the normalization condition
∑

l>j+1 |α
−
j,l(k)|2 = 1−

∑j
l=1 |α

−
j,l(k)|2 then follows

that 2
∑j

l=1(j + 1− l)b−|α−j,l(k)|2 > (2j + 1)b− − ωj(k), giving

j∑
l=1

|α−j,l(k)|2 > (2j + 1)b− − ωj(k)

2jb−
. (3.11)
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Bearing in mind that ωj(k) < (2j−1)
(

2n+1
2n−1

)1/2
b− 6 (2j−1)

(
2j+1
2j−1

)1/2
b− < 2jb−, we deduce

from (3.11) that
j∑
l=1

|α−j,l(k)|2 > 1

2j
, k ∈ ω−1

j (∆j) ∩ R−. (3.12)

Further, since

〈(h(k)− h−(k))ψj(k), ψ−l (k)〉 =

∫ +∞

0
((b+x− k)2 − (b−x− k)2)ψj(x, k)ψ−l (x, k)dx,

for each l ∈ N∗j , and since b+x− k > b−x− k > 0 for all (x, k) ∈ R+ × R−, we find that

|(ωj(k)− (2l − 1)b−)α−j,l(k)| 6
∫ +∞

0
(b+x− k)2|ψj(x, k)||ψ−l (x, k)|dx,

and hence

|(ωj(k)− (2l − 1)b−)α−j,l(k)| 6 ‖(b+x− k)1/2ψj(k)‖L2(R+)‖(b+x− k)3/2ψ−l (k)‖L2(R+). (3.13)

Now, taking into account that

ψ±l (x, k) =
1

(2ll!)1/2

(
b±
π

)1/4

e
− b±

2

(
x− k

b±

)2
Hl

(
b
1/2
±

(
x− k

b±

))
, (3.14)

where Hl denotes the lth Hermite polynomial, and that b+x− k 6 r(b−x− k) for all (x, k) ∈
R+ × R−, we obtain through basic computations that

‖(b+x− k)3/2ψ−l (k)‖L2(R+) 6 r
3/2‖(b−x− k)3/2ψ−l (k)‖L2(R+) 6 c̃lr

3/2b
3/4
− , (3.15)

where c̃l := 1
(2ll!)1/2

1
π1/4

(∫ +∞
0 u3e−u

2
Hl(u)2du

)1/2
> 0 is a constant independent of b± and

k. Further, as ‖(b+x − k)1/2ψj(k)‖L2(R+) =
(
ω′j(k)

2(r−1)

)1/2

by (3.6), we deduce from (3.13) and

(3.15) that

ω′j(k) > 2c̃−2
l |α

−
j,l(k)|2

(
r − 1

r3

)
(ωj(k)− (2l − 1)b−)2b

−3/2
− , l = 1, 2, . . . , j.

Now, by summing up the above estimate over l = 1, 2, . . . , j, minorizing ωj(k)− (2l− 1)b− by
δjb− for every l, and recalling (3.12), we end up getting that

ω′j(k) > cjδ
2
j

(
r − 1

r3

)
b
1/2
− , k ∈ ω−1

j (∆j) ∩ R−, (3.16)

with cj := (max16l6j c̃l)
−2/j > 0.

Case k > 0. Notice that r2V (x, k) = (rk − b+x)2 > V+(x, k) for all (x, k) ∈ R− × R+, so we
have r2h(k) > h+(k) in the operatorial sense, and consequently∑

l>1

(r2ωj(k)− (2l − 1)b+)|α+
j,l(k)|2 = 〈(r2h(k)− h+(k))ψj(k), ψj(k)〉 > 0,

where α+
j,l(k) := 〈ψj(k), ψ+

l (k)〉. This yields

∑
l>j+1

(
(2l − 1)b+ − r2ωj(k)

)
|α+
j,l(k)|2 6

j∑
l=1

(r2ωj(k)− (2l − 1)b+)|α+
j,l(k)|2. (3.17)
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Further, as r2ωj(k) < 2n+1
2n−1(2j−1−δj)b+ 6 2j+1

2j−1(2j−1−δj)b+ for every k ∈ ω−1
j (R), we obtain

simultaneously that r2ωj(k)−(2l−1)b+ 6 2jb+ for every l ∈ N∗j , and that (2l−1)b+−r2ωj(k) >
2j+1
2j−1δjb+ for all l > j + 1. From this and (3.17) then follows that

2j + 1

2j − 1
δj

∞∑
l=j+1

|α+
j,l(k)|2 6 2j

j∑
l=1

|α+
j,l(k)|2,

which, together with the normalization condition
∑∞

l=j+1 |α
+
j,l(k)|2 = 1−

∑j
l=1 |α

+
j,l(k)|2, and

the inequality 0 < δj < 2j − 1, arising from (3.9), entails

j∑
l=1

|α+
j,l(k)|2 > δj

2(2j − 1)
, k ∈ ω−1

j (∆j) ∩ R+. (3.18)

Now, using that

((2l − 1)b+ − ωj(k))α+
j,l(k) = 〈(h+(k)− h(k))ψj(k), ψ+

l (k)〉

=

∫ 0

−∞
(V+(x, k)− V (x, k))ψj(x, k)ψ+

l (x, k)dx,

for all l ∈ N∗, and bearing in mind that V+(x, k) > V−(x, k) > 0 for every (x, k) ∈ R− × R+,
we get that

|(2l − 1)b+ − ωj(k)||α+
j,l(k)| 6

∫ 0

−∞
V+(x, k)|ψj(x, k)||ψ+

l (x, k)|dx.

This, together with the elementary estimate 0 6 k − b+x 6 r(k − b−x), which holds true for
every (x, k) ∈ R− × R+, shows that each |(2l − 1)b+ − ωj(k)||α+

j,l(k)|, l ∈ N∗j , is majorized by

the scalar product r1/2
∫ 0
−∞(k − b−x)1/2|ψj(x, k)|(k − b+x)3/2|ψl(x, k)|dx. Therefore, we have

|(2l − 1)b+ − ωj(k)||α+
j,l(k)|

6 r1/2‖(k − b−x)1/2ψj(k)‖L2(R−)‖(k − b+x)3/2ψ+
l (k)‖L2(R−), l ∈ N∗j , (3.19)

by applying the Cauchy-Schwarz inequality. Next, using standard computations, we derive
from the explicit expression (3.14) of ψ+

l (k), that

‖(k − b+x)3/2ψ+
l (k)‖L2(R−) = c̃lb

3/4
+ , l ∈ N∗j , (3.20)

where c̃l := 1
(2ll!)1/2

1
π1/4

(∫ +∞
0 u3e−u

2
H2
l (−u)du

)1/2
> 0 is a constant depending only on l.

Furthermore, we have ω′j(k) = 2
(
r−1
r

)
‖(k − b−x)1/2ψj(k)‖2L2(R−) by (3.5), so we obtain

ω′j(k) > 2c̃−2
l |α

+
j,l(k)|2

(
r − 1

r2

)
((2l − 1)b+ − ωj(k))2b

−3/2
+ , l ∈ N∗j , (3.21)

directly from (3.19)-(3.20). Actually, it holds true that

|(2l − 1)b+ − ωj(k)| > δjb+, l ∈ N∗j , k ∈ ω−1
j (∆j) ∩ R+. (3.22)

Indeed, (3.22) follows immediately from the inequality ωj(k) < (2j − 1− δj)b+ for l = j, and
from the two estimates ωj(k) > (2j − 1 + δj)b− and

(2l − 1)b+ 6 (2j − 3)b+ 6 (2j − 3)

(
2n+ 1

2n− 1

)1/2

b− 6 (2j − 3)

(
2j − 1

2j − 3

)1/2

b− < (2j − 1)b−,
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when l ∈ N∗j−1 and n > j > 2. From (3.21)-(3.22) then follows that

ω′j(k) > 2c̃−2
l |α

+
j,l(k)|2δ2

j

(
r − 1

r3/2

)
b
1/2
− l ∈ N∗j , k ∈ ω−1

j (∆j) ∩ R+. (3.23)

Finally, by summing up (3.23) over l = 1, 2, . . . , j, and putting the result together with (3.18),
we end up getting that

ω′j(k) > cjδ
3
j

(
r − 1

r3/2

)
b
1/2
− , k ∈ ω−1

j (∆j) ∩ R+,

where cj := (max16l6j c̃l)
−2/(2j − 1) > 0. Now (3.10) follows immediately from this and from

(3.16). �

4. Existence and localization of edge currents

In light of [3, 9, 10], we define the current carried by a state ϕ as the expectation of
the y-component of the velocity operator vy := (i/2)[H, y] = py − β(x) in the state ϕ, i.e.
Jy(ϕ) := 〈vyϕ,ϕ〉. In this section, we prove the existence of states carrying an edge current
and its localization near x = 0.

4.1. Edge states carrying a current. We expect that a state with energy localized in
intervals away from the Landau levels for b± will carry a current. We prove this by establishing
a lower bound on the matrix element 〈vyϕ,ϕ〉.

Theorem 4.1. Let b−, r, n, j, δj and ∆j be as in Proposition 3.1, and let ϕ ∈ L2(R2) satisfy
ϕ = P(∆j)ϕ, where P(I) denotes the spectral projection of H for the Borel set I ⊂ R. We
have the following estimate for j = 1, . . . , n,

Jy(ϕ) > cjδ
3
j

(
r − 1

r3

)
b
1/2
− ‖ϕ‖2 = cjδ

3
j

(
b+ − b−
b−

)(
b−
b+

)3

b
1/2
− ‖ϕ‖2, (4.1)

where cj is the constant introduced in (3.10).

Proof. The proof depends on the identity

Jy(ϕ) =

∫
R2

v̂y(k)|ϕ̂(x, k)|2dx dk,

with v̂y(k) := k − β(x). Since the state ϕ satisfies ϕ = P(∆j)ϕ, its partial Fourier transform
may be written as

ϕ̂(x, k) := (Fϕ)(x, k) = χω−1
j (∆j)

(k)βj(k)ψj(x, k), (4.2)

where χI denotes the characteristic function of I ⊂ R and βj(k) := 〈ϕ̂(k), ψj(k)〉L2(R). This
yields that

Jy(ϕ) = (1/2)

∫
ω−1
j (∆j)

ω′j(k)|βj(k)|2dk, (4.3)

so the result follows immediately from Proposition 3.1. �

Remark 4.2. In the case b− = b+, we have ∆j = ∅. By (4.3) this implies that Jy(ϕ) = 0 so
there is no edge current. This is consistent with the fact that the Landau Hamiltonian has
only pure point spectrum with localized eigenfunction.
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Remark 4.3. The dependance of the lower bound on b− is optimal in the following sense.
Recall from Proposition 3.1 that ∆j = ((2j − 1 + δj)b−, (2j − 1− δj)b+). For ϕ = P(∆j)ϕ, we

have 〈Hϕ,ϕ〉 ∈ ∆j implying that ‖(py−β(x))ϕ‖ 6 C1b
1/2
+ , for a constant C1 > 0 independent

of b±. Hence, there exists a constant C2 > 0, independent of b±, so that we have the upper
bound on the current

|〈ϕ, vyϕ〉| 6 C2b
1/2
+ . (4.4)

Remark 4.4. The parameters b±, n and j being the same as in Theorem 4.1, an estimate of
the kind of (4.1), i.e.

∃Cj > 0, J(ϕ) > Cjb
1/2
− ‖ϕ‖2, ϕ = P(∆j)ϕ,

is no longer valid when the open interval ∆j contains either (2j − 1)b− or (2j − 1)b+. This
can be seen from Lemma 3.1, (3.7) and the analyticity of k 7→ ωj(k), entailing the existence
of kj ∈ R and κ > 0 such that

ωj(k) ∈ ∆j and ω′j(k) ∈ (0, Cjb
1/2
− ), k ∈ Ij := (kj − κ, kj + κ),

so the state ϕ0(x, y) = (2κ)−1/2
∫
R×Ij e

ikyψj(x, k)dxdk ∈ P(∆j)L
2(R2) verifies

J(ϕ0) =
1

2κ

∫
Ij

ω′j(k)dk < Cjb
1/2
− ‖ϕ0‖2.

4.2. Localization of the edge currents. Edge currents correspond to the trajectories of a
classical charged particle moving under the influence of the magnetic field b(x). The classical

cyclotron radius is b−1/2 so a particle starting at x = 0 and with a positive velocity will move

in the x > 0 half plane in a circular orbit with radius b
−1/2
+ . When it reaches x = 0, the radius

of the orbit changes to b
−1/2
− . Since b+ > b−, there is a net flow in the negative y direction in

a spiral orbit. The classical particle is constrained to a strip of width ∼ 2b
−1/2
− about x = 0.

We prove that the quantum edge currents described in Theorem 4.1 are likewise constrained
to a small strip about x = 0.

Theorem 4.5. Let b−, b+, n, j and ∆j be as in Proposition 3.1. Then for all ε1 > 0 and
ε2 > 0 there exists bj(ε1, ε2) > 0 such that any L2(R2)-normalized function ϕ = P(∆j)ϕ
satisfies ∫

R2

χIε1,ε2 (x)|ϕ(x, y)|2dxdy > 1− ηje−ε
2
1b

2ε2
− /8,

provided b− > bj(ε1, ε2). Here χIε1,ε2 denotes the characteristic function of the interval Iε1,ε2 :=

[−(1 + ε1)b
−1/2+ε2
− , (1 + ε1)b

−1/2+ε2
+ ] and ηj := 2(π(2j − 1))1/2.

Proof. The proof consists of three steps.
First step. We first show that

∀ε2 > 0,∃b(ε2) > 0, b− > b(ε2) =⇒ ω−1
j (∆j) ⊂ (−b1/2+ε2

− , b
1/2+ε2
+ ). (4.5)

We shall actually only prove that ω−1
j (∆j) ⊂ (−b1/2+ε2

− ,+∞), the remaining part of the proof

being obtained in a similar way. To do that we introduce χ ∈ C2(R; [0, 1]) satisfying

χ(x) =

{
0 for x 6 −b−1/2+2ε2

−
1 for x > −b−1/2+2ε2

− /2,
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and ‖χ′‖ 6 cb
1/2
− , ‖χ′′‖ 6 cb−, for some constant c > 0 independent of b±. Then we set

k = kε2 := −b1/2+ε2
− and deduce from (3.14) that

‖χψ−j (kε2)‖2 > Cjb
1/2
−

∫ +∞

−b−1/2+2ε2
− /2

e−b−(x−kε2/b−)2Hj(b
1/2
− (x− kε2/b−))2dx

> Cj

∫ +∞

−b2ε2− /2+b
ε2
−

e−u
2
Hj(u)2du,

for some constant Cj > 0 depending only on j. Taking b− so large that −b2ε2− /2 + bε2− 6 0, we
thus find that

‖χψj(kε2)‖2 > Cj
∫ +∞

0
e−u

2
Hj(u)2du > 0. (4.6)

Further we notice that

(h(kε2)− (2j − 1)b−)χψ−j (kε2) = [h(kε2), χ]ψ−j (kε2)− χ(h(kε2)− h−(kε2))ψ−j (kε2)

= −2iχ′(ψ−j (kε2))′ − χ′′ψ−j (kε2)− χ(V (kε2)− V−(kε2))ψ−j (kε2).

As χ(x)(V (x, kε2)− V−(x, kε2)) = (V+(x, kε2)− V−(x, kε2))χR+(x), this implies that

(h(kε2)−(2j−1)b−)χψ−j (kε2) = −2iχ′(ψ−j (kε2))′−χ′′ψ−j (kε2)−(V+(kε2)−V−(kε2))χR+ψ
−
j (kε2).

(4.7)
Actually, due to (3.14) we find that

‖χ′′ψ−j (kε2)‖2 6 C ′′j b
5/2
−

∫ −b−1/2+2ε2
− /2

−b−1/2+2ε2
−

e−b−(x−kε2/b−)2Hj(b
1/2
− (x− kε2/b−))2dx

6 C ′′j b
2
−

∫ −b2ε2− /2+b
ε2
−

−b2ε2− +b
ε2
−

e−u
2
Hj(u)2du

6 C ′′j b
2
−

∫ −bε2−
−∞

e−u
2
Hj(u)2du,

provided b− is taken so large that bε2− > 4, the constant C ′′j > 0 depending only on j. Hence

‖χ′′ψ−j (kε2)‖2 6 C ′′j b2−e−b
2ε2
− /2

∫ −bε2−
−∞

e−u
2/2Hj(u)2du. (4.8)

By reasoning in the same way with χ′(ψ−j (kε2))′, we obtain that

‖χ′(ψ−j (kε2))′‖2 6 C ′jb−e−b
2ε2
− /2

∫ −bε2−
−∞

e−u
2/2(H ′j(u)− uHj(u))2du, (4.9)

where the constant C ′j > 0 depends only on j. Finally, as

‖(V+(kε2)− V−(kε2))ψ−j (kε2)‖2L2(R+) 6
∫ +∞

0
V+(x, kε2)2ψ−j (x, kε2)2dx,
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and V+(x, kε2) 6 b2+(x− kε2/b−)2 for all x > 0, we deduce from (3.14) that

‖(V+(kε2)− V−(kε2))ψ−j (kε2)‖2L2(R+)

6 cjb
4
+

∫ +∞

0
b
1/2
− (x− kε2/b−)4e−b−(x−kε2/b−)2Hj(b

1/2
− (x− kε2/b−))2dx

6 cj(b
2
+/b−)2

∫ +∞

b
ε2
−

u4e−u
2
Hj(u)2du

6 cj(b
2
+/b−)2e−b

2ε2
− /2

∫ +∞

0
u4e−u

2/2Hj(u)2du,

the constant cj depending only on j. From this and (4.7)-(4.9) then follows that

‖h(kε2)− (2j − 1)b−‖ 6 Cn,jb−e−b
2ε2
− /4,

provided b− is large enough, where Cn,j > 0 depends only on n and j. In light of (4.6)
this entails that dist(σ(h(kε2)), (2j − 1)b−) can be made smaller than δjb− upon choosing b−
sufficiently large. Bearing in mind that

ωl(kε2) 6 ωj−1(kε2) < (2j − 3)b+ 6 (2j − 3)

(
2n+ 1

2n− 1

)1/2

b−,

for all l 6 j − 1 (when n > j > 2) so that

(2j − 1)b− − ωl(kε2) > (2j − 1)b− − (2j − 3)

(
2j − 1

2j − 3

)1/2

b− > b− > 2δjb−, l 6 j − 1,

and that

ωl(kε2)− (2j − 1)b− > ωj+1(kε2)− (2j − 1)b− > 2b− > 4δjb−, l > j + 1,

we necessarily have 0 < ωj(kε2)− (2j − 1)b− < δjb−. This yields ωj(kε2) < inf ∆j , and hence

ωj(k) < inf ∆j for all k 6 kε2 according to Lemma 3.1, so that ω−1
j (∆j) ⊂ (kε2 ,+∞).

Second step. Choose b− > b(ε2) so that (4.5) holds true. We will prove that an eigenfunction
ψj decays in the regions ±x > ±x±j (ε2). In particular, we will prove

|ψj(x, k)| 6 21/2(2j − 1)1/4b
1/4
+ e−b±(x−x±j (ε2))2/2, ±x > ±x±j (ε2), k ∈ ω−1

j (∆j), (4.10)

where

x±j (ε2) := ±

(
b
−1/2+ε2
± + (2j − 1)1/2 b

1/2
+

b±

)
. (4.11)

To prove (4.10)-(4.11), we use (4.5) and check that for all k ∈ ω−1
j (∆j) and that for every

±x > ±x±j (ε2),

Qj(x, k) := V (x, k)− ωj(k) > b2±(x− x±j (ε2))2 > 0.

Using this positivity and integrating the differential equation ψ′′j = Qjψj over the regions

±x > ±x±j (ε2), we establish that ψ′jψj has a fixed sign in each region. This implies that

ψ′j/ψj = (ψ′jψj)/ψ
2
j has the same sign in the same regions. Following Iwatsuka [12, Lemma

3.5], since ψ′′j = Qjψj , differentiating (ψ′j)
2−Qjψ2

j , one finds that it is negative since Q′j > 0 in
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the regions. Since (ψ′j)
2 −Qjψ2

j vanishes at infinity, this means that it is positive from which

we conclude that (ψ′j)
2 > Qjψ2

j . Summarizing these arguments, we obtain

ψ′j(x, k)ψj(x, k) < 0 and
ψ′j(x, k)

ψj(x, k)
< −Qj(x, k)1/2, x > x+

j (ε2),

and

ψ′j(x, k)ψj(x, k) > 0 and
ψ′j(x, k)

ψj(x, k)
> Qj(x, k)1/2, x 6 x−j (ε2).

Integrating the inequalities involving Qj over each region we obtain

|ψj(x, k)| 6 |ψj(x+
j (ε2), k)|e

−
∫ x
x+
j

(ε2)
b+(t−x+j (ε2))dt

, x > x+
j (ε2),

and

|ψj(x, k)| 6 |ψj(x−j (ε2), k)|e−
∫ x−j (ε2)

x b−(x−j (ε2)−t)dt, x 6 x−j (ε2).

The result (4.10) follows from this and the following estimate

ψj(x, k)2 6 2

(∫ x

−∞
ψ′j(t, k)2dt

)1/2

6 2ωj(k) < 2(2j − 1)b+, x ∈ R.

Third step. Choose b− so large that (4.5) and ε1b
ε2
+ > 2(2j − 1)1/2 hold simultaneously

true. Notice that this last condition actually guarantees that we have (1 + ε1/2)b
−1/2+ε2
+ >

x+
j (ε2) + (ε1/2))b

−1/2+ε2
+ . This and (4.10) yields for every k ∈ ω−1

j (∆j) that∫ +∞

(1+ε1)b
−1/2+ε2
+

ψj(x, k)2dx 6 2(2j − 1)1/2b
1/2
+

∫ +∞

x+j (ε2)+(ε1/2)b
−1/2+ε2
+

e−b+(x−x+j (ε2))2dx

6 2(2j − 1)1/2

∫ +∞

(ε1/2)b
ε2
+

e−u
2
du,

hence ∫ +∞

(1+ε1)b
−1/2+ε2
+

ψj(x, k)2dx 6 (π(2j − 1))1/2e−ε
2
1b

2ε2
+ /8, k ∈ ω−1

j (∆j).

By reasoning in the same way we find out for every k ∈ ω−1
j (∆j) (upon choosing b− so large

that ε1b
ε2
− > 2(2j− 1)1/2(b+/b−)1/2, that is (1 + ε1)b

−1/2+ε2
− > −x−j (ε2) + (ε1/2)b

−1/2+ε2
− ) that

the integral
∫ −(1+ε1)b

−1/2+ε2
−

−∞ ψj(x, k)2dx is majorized by (π(2j − 1))1/2e−ε
2
1b

2ε2
− /8 , so we get∫

R\Iε1,ε2
ψj(x, k)2dx 6 2(π(2j − 1))1/2e−ε

2
1b

2ε2
− /8, k ∈ ω−1

j (∆j). (4.12)

Finally, by recalling (4.2), we have∫
R2

χIε1,ε2 (x)|ϕ(x, y)|2dxdy =

∫
R2

χIε1,ε2 (x)|ϕ̂(x, k)|2dxdk

=

∫
ω−1
j (∆j)

|βj(k)|2
(∫

Iε1,ε2

ψj(x, k)2dx

)
dk,
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which, combined with (4.12) and the identity
∫
ω−1
j (∆j)

|βj(k)|2dk = 1, yields the desired result.

�

5. Smooth Iwatsuka Hamiltonians with positive magnetic fields

Having completed the analysis of Iwatsuka Hamiltonians with discontinuous magnetic
fields, we turn to the case when the magnetic field is everywhere bounded 0 < b− 6 b(x) 6
b+ < ∞ and assumes constant values outside of an interval [−ε, ε]. We have b(x) = b− for
x < −ε and b(x) = b+ for x > ε. We will rely on the results obtained in the previous sections
for ε = 0, and show how they imply analogous results in this case. We will take ε > 0 small,

on the order of b
−1/2
− . This will insure that the edge currents remain well-localized in a strip

around x = 0.
The magnetic field is defined as follows. Given ε > 0 and 0 < b− < b+ <∞, we consider

bε ∈ L1
loc(R) satisfying {

bε(x) := b±, if ± x > ε,
b− 6 b(x) 6 b+, when |x| 6 ε.

As in (1.1), we set

βε(x) :=

∫ x

0
bε(s)ds, x ∈ R (5.1)

and consider the 2D vector potential Aε := (Aε,1, Aε,2) defined by Aε,1 := 0 and Aε,2 := βε(x).
The 2D magnetic Schrödinger operator H(Aε) is defined on the dense domain C∞0 (R2)

by

Hε = H(Aε) := (−i∇−Aε)2 = p2
x + (py − βε(x))2. (5.2)

As in section 2, the partial Fourier transform leads to a direct integral composition

FHεF∗ =

∫ ⊕
R
hε(k)dk (5.3)

with

hε(k) := p2
x + Vε(x, k) on L2(R), and Vε(x, k) := (k − βε(x))2. (5.4)

In light of (5.1), the potential Vε(x, k), k ∈ R, is unbounded as |x| goes to infinity, hence
hε(k) has a compact resolvent. Let {ωε,j(k)}∞j=1 be the increasing sequence of the eigenvalues of

the operator hε(k), k ∈ R. Since all the eigenvalues ωε,j(k) are simple they depend analytically
on k ∈ R. Moreover, for all k ∈ R there is a unique xε,k ∈ R such that βε(xε,k) = k since
β′ε(x) = bε(x) > b− for every x ∈ R. As a consequence we have

b2−(x− xε,k)2 6 Vε(x, k) 6 b2+(x− xε,k)2, x ∈ R,

whence

(2j − 1)b− 6 ωε,j(k) 6 (2j − 1)b+, j ∈ N∗, (5.5)

from the minimax principle.
Further, let {ψε,j(k)}∞j=1 be the L2(R)-normalized eigenfunctions of hε(k) satisfying

(hε(k)ψε,j)(x, k) = ωε,j(k)ψε,j(x, k), x ∈ R. (5.6)

We choose all ψε,j(k) to be real, and ψε,1(x, k) > 0, for x ∈ R and k ∈ R. Since Vε(., k) ∈
C0(R) ∩C∞(R∗), the functions ψε,j(., k) ∈ C2(R) ∩C∞(R∗), j ∈ N∗, from [9][Proposition A1].
Moreover, the orthogonal projections |ψε,j(k)〉〈ψε,j(k)| , j ∈ N∗, depend analytically on k.
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5.1. Analysis of the band functions. We treat the ε > 0 problem as a perturbation of the
ε = 0 case. We first prove that the analysis of the band functions ωε,j(k) follows from that
done for ωj(k) in section 3.

5.1.1. A comparison result for the band functions.

Lemma 5.1. Let ε > 0 and j ∈ N∗. Then we have

|ωε,j(k)− ωj(k)| 6 (r − 1)(b
1/2
− ε)

(
(r − 1)(b

1/2
− ε) + 2(2j − 1)1/2r1/2

)
b−, k ∈ R. (5.7)

Proof. Put a := ‖βε − β‖∞. Since hε(k)− h(k) equals the difference of the potentials

Vε(x, k)− V (x, k) = (βε − β)(x)2 − 2(βε − β)(x)v̂y(k),

and ‖v̂y(k)u‖2 = 〈v̂y(k)2u, u〉 6 〈h(k)u, u〉, we have

|〈(hε(k)− h(k))u, u〉|
‖u‖2

6 a

(
a + 2

(
〈h(k)u, u〉
‖u‖2

)1/2
)
, (5.8)

for all u ∈ D(h(0)) \ {0}. Bearing in mind that a 6 (r − 1)b−ε and ωj(k) 6 (2j − 1)rb−, the
result follows from (5.8) and the minimax principle. �

5.1.2. Positivity of the derivative of the band functions. If we assume more regularity on b(x)
for x ∈ [−ε, ε], we can prove a partial analog of Lemma 3.1. However, this additional regularity
is not needed for the main result, Theorem 5.2.

Lemma 5.2. Fix ε > 0 and assume that bε ∈ C1(R). Then we have

ω′ε,j(k) > 0, j ∈ N∗, |k| > b+ε.

Proof. 1.) By the Feynman-Hellmann theorem, we have

ω′ε,j(k) =

〈
dhε
dk

(k)ψε,j(x, k), ψε,j(x, k)

〉
, (5.9)

where
dhε
dk

(k) =
∂Vε
∂k

(x, k) = 2(k − βε(x)) = − 1

bε(x)

∂Vε
∂x

(x, k). (5.10)

Hence, using the last formula on the right in (5.10), and integrating by parts, we obtain

ω′ε,j(k) = −
∫
R

∂Vε
∂x

(x, k)ψε,j(x, k)2 dx

bε(x)

= 2

∫
R
Vε(x, k)ψj(x, k)ψ′j(x, k)

dx

bε(x)
−
∫ ε

−ε
Vε(x, k)ψj(x, k)2 b

′
ε(x)

bε(x)2
dx.

Putting this and (5.7) together we get that

ω′ε,j(k) = 2

∫
R

(ωε,j(k)ψε,j(x, k) + ψ′′j (x, k))ψ′ε,j(x, k)
dx

bε(x)
−
∫ ε

−ε
Vε(x, k)ψε,j(x, k)2 b

′
ε(x)

bε(x)2
dx.

The first term in the right hand side of the above identity reads∫
R

∂

∂x
(ωε,j(k)ψε,j(x, k)2 + ψ′ε,j(x, k)2)

dx

bε(x)
=

∫ ε

−ε
(ωε,j(k)ψε,j(x, k)2 + ψ′ε,j(x, k)2)

b′ε(x)

b2ε (x)
dx,

hence

ω′ε,j(k) =

∫ ε

−ε

(
(ωε,j(k)− Vε(x, k))ψε,j(x, k)2 + ψ′ε,j(x, k)2

) b′ε(x)

b2ε (x)
dx. (5.11)
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Taking into account that b′ε(x)
b2ε (x)

= − d
dx

(
1

bε(x)

)
and integrating by parts in (5.11), we get that

ω′ε,j(k) = −
∑
ζ=+,−

ζ

bζ

(
(ωε,j(k)− Vε(ζε, k))ψε,j(ζε, k)2 + ψ′ε,j(ζε, k)2

)
+

∫ ε

−ε

∂

∂x

(
(ωε,j(k)− Vε(x, k))ψε,j(x, k)2 + ψ′ε,j(x, k)2

) dx

bε(x)
. (5.12)

In light of (5.4) and (5.7) we have

∂

∂x

(
(ωε,j(k)− Vε(x, k))ψε,j(x, k)2 + ψ′ε,j(x, k)2

)
= −∂Vε

∂x
(x, k)ψε,j(x, k)2 = 2(k − βε(x))ψε,j(x, k)2bε(x),

so (5.12) entails

ω′ε,j(k) = −
∑
ζ=+,−

ζ

bζ

(
(ωε,j(k)− Vζ(ζε, k)2)ψε,j(ζε, k)2 + ψ′ε,j(ζε, k)2

)
+2

∫ ε

−ε
(k − βε(x))ψε,j(x, k)2dx. (5.13)

2.) The next step involves relating (ωε,j(k)−Vζ(±ε, k)2)ψε,j(±ε, k)2 +ψ′ε,j(±ε, k)2 to (ωε,j(k)−
k)2ψε,j(0, k)2 +ψ′ε,j(0, k)2. To this purpose we multiply the both sides of the following obvious
identity

ψε,j(±ε, k)2 = ψε,j(0, k)2 + 2

∫
06±x6ε

ψε,j(x, k)ψ′ε,j(x, k)dx,

by ωε,j(k), getting

ωε,j(k)ψε,j(±ε, k)2 = ωε,j(k)ψε,j(0, k)2 ± 2

∫
06±x6ε

(hεψε,j)(x, k)ψ′ε,j(x, k)dx

= ωε,j(k)ψε,j(0, k)2 ∓ 2

∫
06±x6ε

(ψ′′ε,j(x, k)− Vε(x, k)ψε,j(x, k))ψ′ε,j(x, k)dx

= ωε,j(k)ψε,j(0, k)2 ∓
∫

06±x6ε

(
∂ψ′ε,j
∂x

(x, k)2 − Vε(x, k)
∂ψε,j
∂x

(x, k)2

)
dx.

This yields

ψ′ε,j(±ε, k)2 + (ωε,j(k)− Vε(±ε, k))ψ±ε,j(ε, k)2

= ψ′ε,j(0, k)2 + (ωε,j(k)− k2)ψε,j(0, k)2 ± 2

∫
06±x6ε

(k − βε(x))ψε,j(x, k)2bε(x)dx,

by integrating by parts. From this and (5.13) it then follows that

ω′ε,j(k) =

(
1

b−
− 1

b+

)
(ψ′ε,j(0, k)2 + (ωε,j(k)− k2)ψε,j(0, k)2) (5.14)

+2
∑
ζ=+,−

∫
06ζx6ε

(
1− bε(x)

bζ

)
(k − βε(x))ψε,j(x, k)2dx. (5.15)
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Further, by noticing that

ωε,j(k)ψε,j(0, k)2 = ∓2

∫
0<±x<∞

hε(k)ψε,j(x, k)ψ′ε,j(x, k)dx

= ±
∫

0<±x<∞

(
∂ψ′ε,j
∂x

(x, k)2 − Vε(x, k)
∂ψε,j
∂x

(x, k)2

)
dx

= −ψ′ε,j(0, k)2 + k2ψε,j(0, k)2 ∓
∫

0<±x<∞
(k − βε(x))ψε,j(x, k)2bε(x)dx,

we see that

ψ′ε,j(0, k)2 + (ωε,j(k)− k2)ψε,j(0, k)2 = ±2

∫
0<±x<∞

(k − βε(x))ψε,j(x, k)2bε(x)dx.

This entails simultaneously

ω′ε,j(k) = 2

∫ ε

−∞

(
1− bε(x)

b+

)
(k − βε(x))ψε,j(x, k)2dx, (5.16)

and

ω′ε,j(k) = −2

∫ +∞

−ε

(
bε(x)

b−
− 1

)
(k − βε(x))ψε,j(x, k)2dx, (5.17)

with the aid of (5.15). The result now follows immediately from (5.16) for k > b+ε and from
(5.17) for k < −b+ε. �

Remark 5.1. Under the assumptions of Lemma 5.2 we deduce from (5.11) that

ω′ε,j(k) > 0, |k| 6 b+ε, ε ∈
(

0, (2j − 1)1/2b
−1/2
− /(2r)

)
, j ∈ N∗,

provided b′ε(x) > 0 for all x ∈ (−ε, ε). Thus for every ε ∈ (0, b
−1/2
− /(2r)) we have

ω′ε,j(k) > 0, k ∈ R, j ∈ N∗,

under the above prescribed conditions on bε. This result is similar to the one established in
[15][Remark 3.3] under slightly different hypothesis on the magnetic field.

In light of Lemma 5.2 the band functions k 7→ ωε,j(k), j ∈ N∗, are non constant for all
ε > 0, thus the spectrum of Hε is purely absolutely continuous. Moreover, we see from (3.14)
that limk→±∞ ‖(hε(k)− (2j − 1)b±)ψ±j (., k)‖ = 0, hence

lim
k→±∞

ωε,j(k) = (2j − 1)b±, ε > 0, j ∈ N∗,

by (5.5). As a consequence we have

σ(Hε) = σac(Hε) =
⋃
j∈N∗

ωε,j(R) =
⋃
j∈N∗

[(2j − 1)b−, (2j − 1)b+], ε > 0.

5.2. Existence of edge currents. As in section 4, we define the current carried by a state
ϕ as the expectation of the y-component of the velocity operator

vε,y := py − βε(x) = vy + (β − βε)(x), (5.18)

in the state ϕ, that is

Jε,y(ϕ) := 〈vε,yϕ,ϕ〉 = Jy(ϕ) + 〈(β − βε)ϕ,ϕ〉. (5.19)
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The edge current does depend upon ε through βε. However, formulae (5.18)–(5.19) show that
the smooth Iwatsuka model may be treated as a perturbation of the sharp Iwatsuka model for
small ε > 0.

5.2.1. Edge states carrying a current. For all j > 1, we prove that edge currents exist for
any 0 < ε < εj for energies in intervals ∆j . The existence of edge currents is related to the
existence of absolutely continuous spectrum. As mentioned after Lemma 3.1, as long as the
band functions are non constant, the spectrum is absolutely continuous. We established this
for the smooth Iwatsuka model Hε in two cases. First, it follows from Lemma 5.1 and (5.7) that

if b
1/2
− ε << 1, then the two band functions ωε,j(k) and ωj(k) are uniformly close. Since ωj(k)

is monotone increasing by Lemma 1.1, the band function ωε,j(K) cannot be constant. Second,
if we suppose that bε ∈ C1(R), it follows from the above remark and Lemma 5.2 that the band
functions are non constant with no constraint on ε. We mention that Iwatsuka [12] proves
absolutely continuity of the spectrum provided the magnetic field b(x) is smooth b(x) ∈ C∞(R),
it is bounded 0 < M− 6 b(x) 6 M+ < ∞, and lim supx→−∞ b(x) < lim infx→∞ b(x) or the
reverse inequality. Furthermore, under the additional condition that b(x) is monotone (without
any regularity assumption), Dombrowski, Germinet, and Raikov [6, Corollary 2.3] proved the
quantization of the edge current (see section 1.1).

Theorem 5.2. Let b−, r, n, j, δj and ∆j be as in Proposition 3.1. Then there exists εj > 0,
depending on b−, such that for each ε ∈ (0, εj), we may find a subinterval ∆ε,j of ∆j, with
same midpoint Ej, satisfying

Jε,y(ψ) >
cj
2
δ3
j

(
r − 1

r3

)
b
1/2
− ‖ψ‖2, ψ = Pε(∆)ψ, (5.20)

for any subinterval ∆ ⊂ ∆ε,j centered at Ej. Here Pε(I) denotes the spectral projection of Hε

for the Borel set I ⊂ R and the constant cj > 0 is defined by (3.10).

Proof. 1. We perform a decomposition of ψ in order to calculate the current. We set dj = |∆j |/
(2b−) = (r+ 1)((2j−1)(r−1)/(r+ 1)− δj)/2 and, for N > 1, consider the subinterval ∆j,N =
(Ej − dj,Nb−, Ej + dj,Nb−) of ∆j , with dj,N := dj/N . Then we decompose ψ = Pε(∆j,N )ψ,
into the sum

ψ = φ+ ξ, φ := P(∆j)ψ, ξ := P(∆c
j)ψ, (5.21)

where ∆c
j := R \∆j .

2. We next estimate the perturbation. Since Wε := Hε −H = −2(βε − β)vy + (βε − β)2 and

‖vyψ‖ = 〈v2
yψ,ψ〉1/2 6 〈Hψ,ψ〉1/2 6 ‖Hψ‖1/2‖ψ‖1/2 6 (‖Hεψ‖1/2 + ‖Wεψ‖1/2)‖ψ‖1/2, we

have

‖Wεψ‖
‖ψ‖

6 ‖βε − β‖∞

(
‖βε − β‖∞ + 2

(
‖Hεψ‖
‖ψ‖

)1/2

+ 2

(
‖Wεψ‖
‖ψ‖

)1/2
)
. (5.22)

Bearing in mind that ‖βε − β‖∞ 6 ab
1/2
− , with a := (r − 1)(b

1/2
− ε), and that ‖Hεψ‖ 6 (ej +

dj,N )b−‖ψ‖, where we have set ej := Ej/b−, it follows from (5.22) that t = ‖Wεψ‖/(b−‖ψ‖) is
a solution to the inequality

t 6 a
(
a + 2(ej + dj,N )1/2 + 2t1/2

)
.

As a consequence, we have ‖Wεψ‖ 6 2a(2a1/2 + (ej + dj,N )1/4)2b−‖ψ‖, which implies that

‖(H − Ej)ψ‖ 6 ‖Wεψ‖+ ‖(Hε − Ej)ψ‖ 6 cj,N (a)b−‖ψ‖, (5.23)
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where

cj,N (a) := 2a(2a1/2 + (ej + dj,N )1/4)2 + dj,N . (5.24)

3. We next estimate ‖ξ‖ and ‖φ‖. From (5.23) and the definition of ξ, we have

‖ξ‖ 6 c̃j,N (a)‖ψ‖, c̃j,N := cj,N (a)/dj , (5.25)

since ξ = P(∆c
j)(H − Ej)

−1(H − Ej)ψ and ‖P(∆c
j)(H − Ej)

−1‖ 6 1/(djb−) as a bounded

operator in L2(R2). Further, φ and ξ being orthogonal in L2(R2), we deduce from (5.25) that

‖φ‖2 = ‖ψ‖2 − ‖ξ‖2 > (1− c̃j,N (a)2)‖ψ‖2. (5.26)

4. Applying these estimates to the current, we recall from (5.18)-(5.19) that

Jy,ε(ψ) > Jy(ψ)− ab
1/2
− ‖ψ‖2, (5.27)

and from (5.21) that

Jy(ψ) = Jy(φ) + 2Re (〈vyξ, φ〉) + 〈vyξ, ξ〉 > Jy(φ)− ρ(φ, ξ), (5.28)

where

ρ(φ, ξ) := 2|〈vyξ, φ〉|+ |〈vyξ, ξ〉| 6 3‖vyξ‖‖ψ‖. (5.29)

Here we used once more the orthogonality of φ and ξ in L2(R2). Next, by applying Theorem
4.1 and using (5.26), we bound from below the first term in the right hand side of (5.28) as

Jy(φ) > cjδ
3
j

(
r − 1

r3

)
(1− c̃j,N (a)2)b

1/2
− ‖ψ‖2. (5.30)

5. The next step of the proof is to improve the upper bound (5.29) on the remaining term
ρ(φ, ξ). This can be achieved by noticing that

‖vyξ‖2 = 〈v2
yξ, ξ〉 6 〈Hξ, ξ〉 6 〈Hξ, ψ〉 6 〈ξ,Hψ〉 6 ‖ξ‖‖Hψ‖,

since 〈Hξ, φ〉 = 〈HP(∆c
j)ψ,P(∆j)ψ〉 = 〈P(∆c

j)Hψ,P(∆j)ψ〉 = 0, and combining (5.25) with

the estimate ‖Hψ‖ 6 Ej‖ψ‖+ ‖(H −Ej)ψ‖ 6 (ej + cj,N (a))b−‖ψ‖ arising from (5.23)-(5.24).
We get that

ρ(φ, ξ) 6 3c̃j,N (a)1/2(ej + cj,N (a))1/2b
1/2
− ‖ψ‖2. (5.31)

Finally, putting (5.27)-(5.28) and (5.30)-(5.31) together, we end up getting

Jy,ε(ψ) > Fj,N (a)b
1/2
− ‖ψ‖2,

where

Fj,N (a) := cjδ
3
j

(
r − 1

r3

)
(1− c̃j,N (a)2)−

(
3c̃j,N (a)1/2(ej + cj,N (a))1/2 + a

)
.

Finally, we take N sufficiently large and a sufficiently small so that

c̃j,N (a)2 + c−1
j δ−3

j

(
r3

r − 1

)(
3c̃j,N (a)1/2(ej + cj,N (a))1/2 + a

)
6

1

2
. (5.32)

This gives the lower bound (5.20). Note that a = (r − 1)(b
−1/2
− ε) so condition (5.32) requires

that ε < b
−1/2
− . �
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5.2.2. Localization of the edge currents. Continuing to consider βε as a perturbation of β, we
are able to prove that the perturbed edge currents remain localized in a small neighborhood

of x = 0 under the hypothesis of Theorem 5.2 that ε is small relative to b
−1/2
− .

Theorem 5.3. Let b−, r, n, j, εj > 0 and ∆ε,j, for some ε ∈ (0, εj), be the same as in Theorem
5.2. Then for all ε1 > 0 and ε2 > 0 there exists bj(ε1, ε2) > 0 such that any L2(R2)-normalized
function ψ = Pε(∆)ψ, where ∆ is any subinterval of ∆ε,j, satisfies∫

R2

χIε1,ε2 (x)|ψ(x, y)|2dxdy > 1− ηje−ε
2
1b

2ε2
− /8,

provided b− > bj(ε1, ε2). Here χIε1,ε2 denotes the characteristic function of the interval Iε1,ε2 :=

[−(1 + ε1)b
−1/2+ε2
− , (1 + ε1)b

−1/2+ε2
+ ], and ηj = 2(π(2j − 1))1/2, both as in Theorem 4.5.

Proof. The proof is similar to the one of Theorem 4.5. Setting kε2 = −b1/2+ε2
− and arguing in

the exact same way as Step 1 in the proof of Theorem 4.5 we find some bj(ε2) > 0 such that
dist(σ(h(kε2)), (2j− 1)b−) < (δj/2)b−, and thus (2j− 1)b− < ωj(kε2) < (2j− 1)b−+ (δj/2)b−,
for every b > bj(ε2). This yields

b− > bj(ε2) =⇒ (2j − 1)b− < ωj(k) < (2j − 1)b− +
δj
2
b−, k 6 kε2 , (5.33)

by Lemma 3.1. Further, we choose ε̃j = ε̃j(b−) > 0 so small that the right hand side of (5.6),

where
(

2n+1
2n−1

)1/2
and ε̃j are respectively substituted for r and ε, is smaller than (δj/2)b−.

Then, due to (3.8) and Lemma 5.1, we deduce from (5.33) that

b− > bj(ε2) =⇒ ωε,j(k) < (2j − 1)b− + δjb−, k 6 kε2 , ε ∈ (0, ε̃j),

hence

b− > bj(ε2) =⇒ ω−1
ε,j (∆j) ⊂ (kε2 ,+∞), ε ∈ (0, ε̃j).

Now, doing the same with kε2 = b
1/2+ε2
+ we end up getting some constant bj(ε2) > 0 such that

b− > bj(ε2)⇒ (∃ε̃j = ε̃j(b−) > 0, ω−1
ε,j (∆j) ⊂ (−b1/2+ε2

− , b
1/2+ε2
+ ), ε ∈ (0, ε̃j)).

For the sake of simplicity, let us denote min(εj , ε̃j), where εj is the same as in Theorem 5.2,
by εj . Then, ∆ being a subset of ∆j for each ε ∈ (0, εj), it follows readily from the above
implication that

b− > bj(ε2) =⇒ ω−1
ε,j (∆ε,j ⊂ (−b1/2+ε2

− , b
1/2+ε2
+ ), ε ∈ (0, εj). (5.34)

Let us now fix b− > bj(ε2) and ε ∈ (0, εj/b
1/2
− ). We notice that ±x±j (ε2) > ε, where x±j is

defined by (4.11), so we have Vε(x, k) = V (x, k) = (k − b±x)2 for every ±x > ±x±j . From this

and (5.34) then follows for each ε ∈ (0, εj) that

|ψε,j(x, k)| 6 21/2(2j − 1)1/4b
1/4
+ e−b±(x−x±j (ε2))2/2, ±x > ±x±j (ε2), k ∈ ω−1

ε,j (∆ε,j),

by just mimicking Step 2 in the proof of Theorem 4.5.
Having said that, the end of the proof now applies without change upon substituting ψ

(resp. ωε,j , ψε,j) for ϕ (resp. ωj , ψj). �
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6. Perturbations of Iwatsuka Hamiltonians: Stability of edge currents

We now consider the perturbation of Hε = H(Aε) defined in (5.1)-(5.2) by a magnetic
potential a(x, y) = (a1(x, y), a2(x, y)) ∈ W1,∞(R2) and a bounded scalar potential q(x, y) ∈
L∞(R2). We prove that the lower bound on the edge current in Theorem 5.2 is stable with
respect to these perturbations provided ‖a‖∞ and ‖q‖∞ are not too large compared with b±
in a sense to be made precise.

Prior to establishing this result we introduce some useful notation and rigorously define
the perturbed Hamiltonian under study. To this end we introduce

Wε(a) := H(Aε + a)−Hε = −2a · (i∇+Aε)− i(∇ · a) + |a|2, (6.1)

where |a|2 is a shorthand for a · a. Since ‖(−i∇ − Aε)ϕ‖ = 〈Hεϕ,ϕ〉1/2 6 λ‖Hεϕ‖ + λ−1‖ϕ‖
for all ϕ ∈ C∞0 (R2) and λ > 0, we have that

‖Wε(a)ϕ‖ 6 2λ‖a‖∞‖Hεϕ‖+ (λ−1 + ‖∇a‖∞ + ‖a‖2∞)‖ϕ‖, λ > 0,

by (6.1). This guarantees that Wε(a) is Hε-bounded with relative bound smaller than one
provided λ ∈ (0, 1/(2‖a‖∞)), so the operator H(Aε + a) is selfadjoint in L2(R2), with same
domain as Hε from [16][Theorem X.12]. Moreover the same is true for H(Aε+a, q) := H(Aε+
a) + q since q ∈ L∞(R2).

Following the ideas of §4 and §5 we may now define the second component of the velocity
operator associated to H(Aε + a, q) as

vy,Aε+a,q = vy,Aε+a :=
i

2
[H(Aε + a, q), y] = vy,ε − a2, (6.2)

and the current carried by a quantum state ψ as

Jy,Aε+a,q(ψ) := 〈vy,Aε+aψ,ψ〉. (6.3)

Notice that we keep the subscript q in the left hand side of the identity (6.3) although the
y-component of the velocity is independent of q according to (6.2), and q is nowhere to be seen
in the right hand side of (6.3). This is actually justified by the fact that the state ψ we shall
consider in the sequel is determined from H(Aε + a, q) and thus depends on q, along with the
current it carries.

Theorem 6.1. Let b−, r, n, j, δj, εj and ∆ε,j, for some fixed ε ∈ (0, εj), be the same as in
Theorem 5.2. Then there are three constants a∗ > 0, q∗ > 0 and d∗ > 0, all of them being

independent of b−, such that for all a ∈W1,∞(R2) obeying (‖a‖2∞ + ‖∇a‖∞)1/2 6 a∗b
1/2
− and

all q ∈ L∞(R2) with ‖q‖∞ 6 q∗b−, the following estimate

Jy,Aε+a,q(ψ) >
cj
4
δ3
j

(
r − 1

r3

)
b
1/2
− ‖ψ‖2, ψ ∈ PAε+a,q(∆)L2(R2), (6.4)

holds true for any subinterval ∆ of ∆ε,j with same midpoint, satisfying |∆| 6 d∗b−. Here
PAε+a,q(I) is the spectral projection of H(Aε + a, q) for the Borel set I ⊂ R, and cj is the
constant introduced in Theorem 4.1.

Proof. The proof is similar to the one of Theorem 5.2. Put dj := |∆ε,j |/(2b−) and dj,N := dj/
N , for some N > 1. Further, introduce the set ∆j,N := (Ej − dj,Nb−, Ej + dj,Nb−), where Ej
is the center of ∆ε,j , and decompose ψ = PAε+a,q(∆j,N )ψ into the sum

ψ = φ+ ξ, φ := Pε(∆ε,j)ψ, ξ := Pε(∆c
ε,j)ψ, (6.5)
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where ∆c
ε,j = R \∆ε,j . Since ‖(i∇+Aε)ψ‖ = 〈Hεψ,ψ〉1/2 6 ‖Hεψ‖1/2‖ψ‖1/2 and

‖Hεψ‖ 6 ‖H(Aε + a, q)ψ‖+ ‖q‖∞‖ψ‖+ ‖Wε(a)ψ‖ 6 (ej + dj,N + q)b−‖ψ‖+ ‖Wε(a)ψ‖,
with ej := Ej/b− and q := ‖q‖∞/b−, we deduce from (6.1) that

‖Wε(a)ψ‖
b−‖ψ‖

6 a

(
a + 2(ej + dj,N + q)1/2 + 2

(
‖Wε(a)ψ‖
b−‖ψ‖

)1/2
)
,

where a := (‖a‖2∞ + ‖∇a‖∞)1/2/b
1/2
− . This entails ‖Wε(a)ψ‖ 6 2a(2a1/2 + (ej + dj,N +

q)1/4)2b−‖ψ‖ and thus

‖(Hε − Ej)ψ‖ 6 ‖(Wε(a) + q)ψ‖+ ‖(H(Aε + a, q)− Ej)ψ‖ 6 cj,N (a, q)b−‖ψ‖, (6.6)

where

cj,N (a, q) := 2a(2a1/2 + (ej + dj,N + q)1/4)2 + dj,N + q. (6.7)

As a consequence we have

‖ξ‖ 6 c̃j,N (a, q)‖ψ‖, c̃j,N (a, q) := cj,N (a, q)/dj , (6.8)

since ξ = Pε(∆c
ε,j)(Hε−Ej)−1(Hε−Ej)ψ and ‖Pε(∆c

ε,j)(Hε−Ej)−1‖ 6 1/(djb−) as a bounded

operator in L2(R2). Moreover, φ and ξ being orthogonal in L2(R2), it follows from (6.8) that

‖φ‖2 = ‖ψ‖2 − ‖ξ‖2 > (1− c̃j,N (a, q)2)‖ψ‖2. (6.9)

Now recall from (6.2)-(6.3) that

Jy,Aε+a,q(ψ) = Jy,ε(ψ)− 〈a2ψ,ψ〉 > Jy,ε(ψ)− ab
1/2
− ‖ψ‖2, (6.10)

and from (6.5) that

Jy,ε(ψ) = Jy,ε(φ) + 2Re (〈vy,εξ, φ〉) + 〈vy,εξ, ξ〉 > Jy,ε(φ)− ρ(φ, ξ), (6.11)

where

ρ(φ, ξ) := 2|〈vy,εξ, φ〉|+ |〈vy,εξ, ξ〉| 6 3‖vy,εξ‖‖ψ‖. (6.12)

Here we used once more the orthogonality of φ and ξ in L2(R2).
Further, applying Theorem 5.2 and using (6.9), the first term in the right hand side of

(6.11) is bounded from below as

Jy,ε(φ) >
cj
2
δ3
j

(
r − 1

r3

)
(1− c̃j,N (a, q)2)b

1/2
− ‖ψ‖2. (6.13)

The next step of the proof is to improve the upper bound (6.12) on the remaining term ρ(φ, ξ).
This can be achieved by noticing that

‖vy,εξ‖2 = 〈v2
y,εξ, ξ〉 6 〈Hεξ, ξ〉 6 〈Hεξ, ψ〉 6 〈ξ,Hεψ〉 6 ‖ξ‖‖Hεψ‖,

since 〈Hεξ, φ〉 = 〈HεPε(∆c
ε,j)ψ,Pε(∆ε,j)ψ〉 = 〈Pε(∆c

ε,j)Hεψ,Pε(∆ε,j)ψ〉 = 0, and combining

(6.8) with the estimate ‖Hεψ‖ 6 Ej‖ψ‖+ ‖(Hε−Ej)ψ‖ 6 (ej + cj,N (a, q))b−‖ψ‖ arising from

(6.6)-(6.7). We get ‖vy,εξ‖ 6 ‖Hεψ‖1/2‖ξ‖1/2 6 c̃j,N (a, q)1/2(ej + cj,N (a, q))1/2b
1/2
− ‖ψ‖, hence

ρ(φ, ξ) 6 3c̃j,N (a, q)1/2(ej + cj,N (a, q))1/2b
1/2
− ‖ψ‖2, (6.14)

by (6.12). Finally, putting (6.10)-(6.11) and (6.13)-(6.14) together, we end up getting that

Jy,Aε+a,q > Fj,N (a, q)b
1/2
− ‖ψ‖2,
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where

Fj,N (a, q) :=
cj
2
δ3
j

(
r − 1

r3

)
(1− c̃j,N (a, q)2)− 3c̃j,N (a, q)1/2(ej + cj,N (a, q))1/2 − a.

Last, taking 1/N , a and q so small that

c̃j,N (a, q)2 + 2c−1
j δ−3

j

(
r3

r − 1

)
(3c̃j,N (a, q)1/2(ej + cj,N (a, q))1/2 + a) 6

1

2
,

we obtain the desired result. �
In light of (6.2)-(6.3), the inequality (6.4), may be equivalently rephrased as the following

Mourre estimate

PAε+a,q(∆)i[H(Aε + a, q), y]PAε+a,q(∆) >
cj
4
δ3
j

(
r − 1

r3

)
b
1/2
− PAε+a,q(∆). (6.15)

Moreover y is a bona-fide conjugate operator for the magnetic operator H(Aε + a, q) in the
sense of Mourre since (i/2)[H(Aε + a, q), y] = (vε,y − a2) is bounded from the domain of H to
L2(R2), and the double commutator i[i[H(Aε + a, q), y], y] = 2. Therefore, in view of (6.15)
and [4][Corollary 4.10] we have obtained the:

Corollary 6.1. Under the conditions, and with notations, of Theorem 6.1, the spectrum of
the operator H(Aε + a, q), ε ∈ (0, εj), is purely absolutely continuous in the interval ∆:

σ(H(Aε + a, q)) ∩∆ = σac(H(Aε + a, q)) ∩∆.

The existence of edge currents for energies in a suitable subinterval of R+ is thus equiv-
alent to the existence of purely absolutely continuous spectrum for H(Aε + a, q) in the corre-
sponding interval.

7. Persistence of edge currents in time: Asymptotic velocity

We investigate the time evolution of the current under the unitary evolution groups
generated by the Iwatsuka and perturbed Iwatsuka Hamiltonians. The general situation we
address is the following. Let H be a self-adjoint Schrödinger operator on L2(R2). This operator
generates the unitary time evolution group U(t) = e−itH . Let vy := (i/2)[H, y] be the y-
component of the velocity operator. We are interested in evaluating the asymptotic time
behavior of 〈U(t)ϕ, vyU(t)ϕ〉 as t→ ±∞.

The lower bounds on the edge currents for the two unperturbed models, the sharp
and smooth Iwatsuka models, are valid for all times. It we replace vy in (4.1) by vy(t) :=
eitHvye

−itH , then the lower bound remains valid since the state ϕ(t) := U(t)ϕ satisfies
P(∆j)ϕ(t) = ϕ(t) for all time. Similarly, if we replace vε,y in (5.20) by its time evolved
current vε,y(t) using the operator Uε(t) = e−itHε , then the lower bound in (5.20) remains valid
for all time.

Perturbed Hamiltonians H(Aε +a, q) were treated in section 6. Theorem 6.1 states that

if the L∞-norms of aj , ∇aj , for j = 1, 2, and of q are small relative to b
1/2
− , then the edge

current Jy,Aε+a,q(ψ) is bounded from below for all ψ ∈ PAε+a,q(∆)L2(R2), where ∆ ⊂ ∆ε,j ,
with ∆ε,j as defined in Theorem 5.2. By the same reasoning as above, the same lower bound
holds for the time-evolved edge current 〈ψ, vε,Aε+a,q(t)〉 for all time. The boundedness of aj ,
∇aj , and of q is rather restrictive. From the form of the current operator in (6.2), it would
appear that only ‖a2‖∞ needs to be controlled. We prove here that if we limit the support
of the perturbation (a1, a2, q) to a strip of arbitrary width R in the y-direction, and require
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only that ‖a2‖∞ be small relative to b
1/2
− , then the asymptotic velocity associated with energy

intervals ∆ ⊂ ∆ε,j and the perturbed Hamiltonian H(Aε + a, q) exists and satisfies the same
lower bound as in (6.4). Furthermore, the spectrum in ∆ is absolutely continuous. This
means that the edge current is stable with respect to a different class of perturbations than in
Theorem 6.1.

The asymptotic velocity associated with a pair of self-adjoint operators (H0, H1) is de-
fined in terms of the local wave operators for the pair, see, for example [5, section 4.5–4.6].
The local wave operators Ω±(∆) for an energy interval ∆ ⊂ R are defined as the strong limits:

Ω±(∆) = s− lim
t→±∞

eitH1e−itH0P0,ac(∆), (7.1)

where P0,ac(∆) is the spectral projector for the absolutely continuous subspace of H0 associated
with the interval ∆. For any ϕ, we define the asymptotic velocity V ±y (∆) of the state ϕ by

〈ϕ, V ±y (∆)ϕ〉 := 〈ϕ,Ω±(∆)vyΩ±(∆)∗ϕ〉.

In the case that H0 commutes with vy, it is easily seen from the definition (7.1) that

〈ϕ, V ±y (∆)ϕ〉 := lim
t→±∞

〈ϕ, eitH1P0,ac(∆)vyP0,ac(∆)e−itH1ϕ〉.

Our main result is the existence of the asymptotic velocity in the y-direction for the
perturbed operators H(Aε+a, q) of section 6 under less stringent conditions on the norm of the
perturbation. We prove that the asymptotic velocity satisfies the lower bound given in (6.15)

provided the perturbations have compact support in the y-direction and that ‖a2‖∞ 6 a∗b1/2− .
For notational simplicity, we write H0 = Hε = H(Aε), for ε > 0 and H1 = H(Aε + a, q). It
follows from Lemma 5.1 that the spectrum of H0 = Hε is purely absolutely continuous if ε > 0
is sufficiently small. We will write P0(∆) for P0,ac(∆) because of this.

Theorem 7.1. Let b−, r, n, j, δj, cj, εj and ∆ε,j, for some fixed ε ∈ (0, εj), be the same as in
Theorem 5.2. Suppose that the perturbation a ∈W1,∞(R2) and q ∈ L∞(R2) have their support
in the set {(x, y) | |y| < R}, for some 0 < R <∞. In addition, suppose that the perturbation

a2 satisfies ‖a2‖∞ 6 a∗b
1/2
− , where a∗ <

cj
4 δ

3
j

(
r−1
r3

)
. Consider any subinterval ∆ ⊂ ∆ε,j with

same midpoint. Then for any ϕ ∈ Ran PAε+a,q(∆), we have

〈ϕ, V ±y (∆)ϕ〉 > cj
4
δ3
j

(
r − 1

r3

)
b
1/2
− ‖ϕ‖2.

Following section 4 of [9], we prove Theorem 7.1 by first proving the existence of local
wave operators for the pair H0 := Hε and H1 := H(Aε + a, q), and any interval ∆ ⊂ ∆ε,j , as
in the theorem.

Lemma 7.1. Let (H0, H1) and ∆ be as defined in Theorem 7.1. The local wave operators for
(H0, H1) and interval ∆ exist. That is, the strong limits

limt→±∞e
itH1e−itH0P0(∆),

exist and define bounded operators Ω±(∆) on L2(R2). Consequently, the spectrum of H1 is
absolutely continuous in ∆.
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Proof. 1. We use Cook’s method and study the local operators defined by

Ω(t,∆)− P0(∆) = eitH1e−itH0P0(∆)− P0(∆)

=

∫ t

0

d

ds
eisH1e−isH0P0(∆) ds

= i

∫ t

0
eisH1Wεe

−isH0P0(∆) ds, (7.2)

where Wε := H1 −H0. It suffices to prove that for any smooth vector ϕ

lim
t1,t2→∞

∫ t2

t1

Wεe
−isH0P0(∆)ϕ ds = 0, (7.3)

and similarly for t` → −∞, for ` = 1, 2.
2. We easily calculate a formula for the perturbation:

Wε = −2pxa1 − 2(py − βε(x))a2 − i(∂xa1)− i(∂ya2) + a2
1 + a2

2 + q.

The coefficients of the first-order operator Wε are supported in |y| < R. Let χR(y) ∈ C2
0 (R)

be a nonnegative function equal to one on [−R,R] and supported in [−2R, 2R]. We write the
integral in (7.3) as∫ t2

t1

Wεe
−isH0P0(∆)ϕ ds =

∫ t2

t1

Wε(H0 + 1)−1(H0 + 1)χR(y)e−isH0P0(∆)ϕ ds.

It is clear that ‖Wε(H0 + 1)−1‖ <∞. Furthermore, we compute the commutator:

(H0 + 1)χR = χR(H0 + 1) +Qε,

and note that the coefficients of Qε are supported in [−2R,−R] ∪ [R, 2R], where

Qε = −2i(py − βε(x))χ′R + χ′′R.

As a consequence, we need to estimate integrals of the form for ` = 1, 2:

K` χ2R(y)

∫ t2

t1

e−isH0P0(∆)ϕ ds = K` χ2R(y)

∫ t2

t1

ds

∫
ω−1
ε,j (∆)

ei(ky−sωε,j(k))m`(k)βε,j(k)ψε,j(x, k) dk,

(7.4)
where βε,j(k) = 〈ϕ̂(·, k), ψε,j(·, k)〉, and the operator K1 = Wε(H0 + 1)−1 with m1(k) = 1 +
ωε,j(k), and K2 = Wε(H0 + 1)−1Qε with m1(k) = 1. Both operators K` are bounded.
3. We use the method of stationary phase to evaluate the long time behavior of the integral
in (7.4). Let Φ(k, y, s) := ky − sωε,j(k) denote the phase function. We then have

∂kΦ(k, y, s) := y − sω′ε,j(k).

From Theorem 5.2 for H0 = Hε, we know that for k ∈ ω−1
ε,j (∆), the derivative ω′ε,j(k) is

bounded below by the right side of (5.20). Consequently, we have the lower bound on the
derivative of the phase:

|∂kΦ(k, y, s)χ̃R(y)| > 1

2
scjδ

3
j

(
r − 1

r3

)
b
1/2
− − 2R.

This is clearly bounded from below by a positive constant for s large enough. Since ωε,j(k)
is analytic, we can differentiate the phase any number of times. As a consequence, for any
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N > 1, the integral in (7.4) may be bounded above as∣∣∣∣∣
∫ t2

t1

ds

∫
ω−1
ε,j (∆)

eiΦ(k,s,y)m`(k)βε,j(k)ψε,j(x, k) dk

∣∣∣∣∣ 6 CN
∫ t2

t1

ds

〈s〉N

∣∣∣∣∣
∫
ω−1
ε,j (∆)

eiΦ(k,s,y)Σj,N (x, k) dk

∣∣∣∣∣ ,
where Σj,N (x, k) ∈ L2(R× ω−1

ε,j (∆)). Upon taking N > 2, the integral vanishes as t1, t2 →∞.

This, along with the boundedness of the operators K`, establishes (7.3). �

The absolutely continuity of the spectrum of H(Aε + a, q) is the interval ∆ was already es-
tablished using the Mourre estimate in section 6 under smallness bounds on the perturbation
(a, q) and ∇a. This lemma establishes the absolute continuity of the spectrum in ∆ under
different conditions of the perturbation. We now prove Theorem 7.1.

Proof. 1. The local wave operators Ω±(∆) satisfy a local intertwining property:

Ω±(∆)∗P1(∆) = P0(∆)Ω±(∆)∗. (7.5)

Let ϕ = P1(∆)ϕ and recall that the velocity operator for H(Aε + a, q) is given in (6.2). As a
consequence, we compute

〈ϕ, V ±y (∆)ϕ〉 = 〈ϕ,Ω±(∆)vy,Aε+a,qΩ±(∆)∗ϕ〉
= 〈Ω±(∆)∗P1(∆)ϕ, vy,Aε+a,qΩ±(∆)∗P1(∆)ϕ〉
= 〈P0(∆)Ω±(∆)∗ϕ, vy,Aε+a,qP0(∆)Ω±(∆)∗ϕ〉

2. We now recall that vy,Aε+a,q = vy,ε − a2. The operator P0(∆)vy,εP0(∆) is bounded below

by
cj
2 δ

3
j

(
r−1
r3

)
b
1/2
− according to Theorem 5.2. Our hypotheses on a2 is that ‖a2‖∞ 6 a∗b1/2− <

cj
4 δ

3
j

(
r−1
r3

)
b
1/2
− . Consequently, we obtain

〈ϕ, V ±y (∆)ϕ〉 > cj
4
δ3
j

(
r − 1

r3

)
b
1/2
− ‖P0(∆)Ω±(∆)∗ϕ‖2. (7.6)

We again use the intertwining relation (7.5) to write

‖P0(∆)Ω±(∆)∗ϕ‖ = ‖Ω±(∆)∗P1(∆)ϕ‖ = ‖ϕ‖,

since the local wave operators are local partial isometries. Using this identity in the lower
bound (7.6) establishes the result. �

For generalized Iwatsuka models, Mǎntoiu and Purice [15] proved minimum and maxi-
mum velocity estimates. Their Theorem 5.2 requires that the magnetic field b(x) be positive,
bounded 0 < b− 6 b(x) 6 b+ < ∞, and that limx→±∞ b(x) = b±. For these general mod-
els, the band functions may have several critical points that is not the case for the sharp
and soft Iwatsuka models studied here. In our case, their results apply to the unperturbed
operator Hε, for ε > 0. For Hε, their main result may be stated as follows. Let ∆ be any
energy interval as in Theorem 7.1. With respect to ∆, we define ρ∆ = infk∈ω−1

ε,j (∆) ω
′
ε,j(k)

and θ∆ = supk∈ω−1
ε,j (∆) ω

′
ε,j(k). These constants play the role of the minimum and maximum

velocity, respectively. Let F be a real-valued function on R with support outside of the interval
[ρ∆, θ∆]. Then, we have∫ ∞

1

dt

t
‖F (|y|/t)e−itHεPε(∆)ϕ‖2 6 C‖ϕ‖2, ∀ϕ ∈ L2(R2).
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This means that for states with energy in ∆, the time evolution of the y-coordinate, y(t) =
eitHεye−itHε satisfies

ρ∆t 6 |y(t)| 6 θ∆t, t→ +∞,
and a similar bound for t → −∞. The constants ρ∆ and θ∆ are thus the minimum and
maximum velocities associated with ∆. In our situation the edge current is also strongly

localized to the strip |x| 6 Cb−1/2
− .
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[8] J. Fröhlich, G.-M. Graf, J. Walcher, On the extended nature of edge states of quantum Hall systems, Ann.
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