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Abstract. We present the basics of two-body quantum-mechanical scatter-

ing theory and the theory of quantum resonances. The wave operators and
S-matrix are constructed for smooth, compactly-supported potential perturba-

tions of the Laplacian. The meromorphic continuation of the cut-off resolvent

is proved for the same family of Schrödinger operators. Quantum resonances
are defined as the poles of the meromorphic continuation of the cut-off resol-

vent. These are shown to be the same as the poles of the meromorphically

continued S-matrix. The basic problems of the existence of resonances and
estimates on the resonance counting function are described.
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1. Introduction: Schrödinger operators

The purpose of these notes is to present the necessary background and the cur-
rent state-of-the-art concerning quantum resonances for Schrödinger operators in
a simple, but nontrivial, setting. The unperturbed Hamiltonian H0 = −∆ is the
Laplacian on L2(Rd). In quantum mechanics, the Schrödinger operator or Hamil-
tonian H0 represents the kinetic energy operator of a free quantum particle. Many
interactions are represented by a potential V that is a real-valued function with
V ∈ L∞0 (Rd), the essentially bounded functions of compact support. Occasionally,
we need the potential to have some derivatives and this will be indicated. If, for
example, the potential V ∈ C∞0 (Rd), then all the results mentioned here hold true.
The perturbed Hamiltonian is HV = −∆ + V .

A fundamental property shared by both Hamiltonians is self-adjointness. The
unperturbed Hamiltonian H0 is self-adjoint on its natural domain H2(Rd), the
Sobolev space of order two, which is dense in L2(Rd). The self-adjoint operator
H0 is the generator of a one-parameter strongly-continuous unitary group t ∈ R →
U0(t) = e−iH0t.

The potential V is relatively H0-bounded with relative bound zero. By the Kato-
Rellich Theorem [14, Theorem 13.5], the perturbed operator HV is self-adjoint on
the same domain H2(Rd). This self-adjoint operator generates a one-parameter
strongly-continuous unitary group t ∈ R → UV (t) = e−iHV t.

The unitary groups U0(t) and UV (t) provide solutions to the initial value problem
for the Schrödinger operator in L2(Rd). For example, the solution to

(1) i
∂ψ(t)
∂t

= HV ψ(t), ψ(0) = ψ0 ∈ H2(Rd),

is formally given by ψ(t) = UV (t)ψ0. In this way, the unitary group UV (t) provides
the time-evolution of the initial state ψ0.

Scattering theory seeks to provide a description of the perturbed time-evolution
UV (t) in terms of the simpler (as we will show below) time-evolution U0(t). Al-
though we will work on the Hilbert space L2(Rd), much of scattering theory can
be formulated in a more abstract setting. Consequently, we will often write H for
a general Hilbert space.

Suppose we take a state f ∈ H and consider the interacting time-evolution
UV (t)f . There is one less interesting case. Suppose that f is an eigenfunction of
HV with eigenvalue E. The eigenvalue equation is HV f = Ef . Then, the time
evolution is rather simple since UV (t)f = e−itEf . We do not expect this simple
oscillating state to be approximated by the free dynamics so we should eliminate
these states from our consideration. Let Hcont(HV ) be the closed subspace of H
orthogonal to the span of all the eigenfunctions of HV . We will call these states
the scattering states of HV . Given f ∈ Hcont(HV ), can we find a state f+ ∈ H so
that as time runs to plus infinity, the state UV (t)f looks approximately like the free
time-evolution U0(t)f+? In particular, we ask if given f ∈ Hcont(HV ), does there
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exist a state f+ ∈ H so that

(2) UV (t)f − U0(t)f+ → 0, as t→ +∞.

As we will see, when it is possible to find such a vector f+, we have a simpler
description of the dynamics UV (t) generated by HV . We can also pose the question
concerning the existence of f− so that (2) holds for t→ −∞ with f− replacing f+.

We understand (2) to mean convergence as a vector in H, that is

(3) lim
t→+∞

‖UV (t)f − U0(t)f+‖H = 0.

As described above concerning HV , if f+ is an eigenfunction of H0 with eigenvalue
E, that is H0f+ = Ef+, then U0(t)f+ = e−itEf+, we would not expect the limit (3)
to exist. Hence, we want f+ to be a state with nontrivial free time evolution. This
means that we want f+ to be a scattering state for H0, that is, f+ ∈ Hcont(H0).
For our specific example, H0 = −∆, there are no eigenfunctions so Hcont(H0) = H.

Because the operators U0(t) and UV (t) are unitary, the limit in (3) is equivalent
to

(4) lim
t→+∞

‖f − UV (t)∗U0(t)f+‖H = 0.

Since H0 = −∆ has no eigenvalues and only continuous spectrum, we expect that
the limit

(5) lim
t→+∞

UV (t)∗U0(t)f+ = f,

if it exists, should exist for all states f+ in H. Similarly, we might expect that the
limit

(6) lim
t→−∞

UV (t)∗U0(t)f− = f,

exists for all f ∈ H. We will prove in section 2 that these limits do exist and
define bounded operators Ω±(HV ,H0) on H called the wave operators for the pair
(H0,HV ). The map S : f− → f+ will also play an important role. This map is
called the S-operator.

Two technical remarks. 1) The subspace of scattering states Hcont(HV ) is tech-
nically the absolutely continuous spectral subspace of HV (see section 8.1). The
unperturbed operator H0 = −∆ has spectrum equal to the half-line [0,∞) and
is purely absolutely continuous. In our setting, the perturbed operator HV has
only absolutely continuous spectrum and possibly eigenvalues. In general, it is a
difficult task to prove the absence of singular continuous spectrum. There is an
orthogonal spectral projector Econt(HV ) so that Hcont(HV ) = Econt(HV )H. We
will use either notation interchangeably. 2) The type of convergence described in
(5) and (6) is called strong convergence of operators. We say that a sequence of
bounded operators An on H converges strongly to A ∈ B(H) if for all f ∈ H, we
have limn→∞Anf = Af .

2. Fundamentals of two-body scattering theory

The basic objects of scattering theory are the wave operators and the scatter-
ing operator. The crucial property of the wave operators Ω±(HV ,H0) is called
asymptotic completeness. This condition guarantees the unitarity of the scattering
operator. On the level of spectral theory, asymptotic completeness means that the
restrictions of the operatorsH0 andHV to their absolutely continuous subspaces are
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unitarily equivalent. From this viewpoint, scattering theory is a tool for studying
the absolutely continuous spectral components of the pair (H0,HV ) of self-adjoint
operators. The theory has been developed to a very abstract level and the reader
is referred to the references (for example, [32, 45]).

2.1. Wave operators. Another way to write (4) is

(7) lim
t→∞

UV (t)∗U0(t)f+ = f,

so one of our first tasks is to ask whether the limit on the left side of (7) exists.

Proposition 1. Suppose that the real-valued potential V ∈ L∞0 (Rd) and that d ≥ 3.
For any f ∈ H, the limit

(8) lim
t→∞

UV (t)∗U0(t)f

exists. This limit defines a bounded linear transformation Ω+(HV ,H0) with
‖Ω+(HV ,H0)‖ = 1.

The linear operator Ω+(HV ,H0) is called a wave operator. We can also consider
the limit in (7) as time runs to minus infinity. We introduce another wave operator
Ω−(HV ,H0) defined by

(9) s− lim
t→−∞

UV (t)∗U0(t) ≡ Ω−(HV ,H0),

when the strong limit exists. Of course, we can introduce another pair of wave
operators by interchanging the order of HV and H0. We will consider these wave
operators Ω±(H0,HV ) in section 2.3 when we discuss asymptotic completeness. We
will see that it is much more difficult to prove the existence of these wave operators.
We prove Proposition 1 using the classic Cook-Hack method (see, for example, [31,
section XI.4]). In the following proof, we drop the notation involving the Hamilto-
nians with the understanding that we are proving the existence of Ω±(HV ,H0).

Proof. 1. The proof of Proposition 1 relies on an explicit estimate for the free
propagation given by U0(t). For any f ∈ L1(Rd) ∩ L2(Rd), and for t 6= 0, we have

(10) ‖U0(t)f‖∞ ≤ Cd

td/2
‖f‖1.

This is proved (see [1, Lemma 3.12]) using an explicit formula for U0(t)f , t 6= 0,
and f ∈ L1(Rd) ∩ L2(Rd):

(11) (U0(t)f)(x) =
(

1
4πit

)d/2 ∫
Rd

e−i|x−y|2/(4t) f(y) ddy.

This is based on the fact that the Fourier transform (see (36)) of the action of the
free propagation group is

(12) (F (U0(t)f))(k) = e−i|k|2t(Ff)(k).

To establish (11), one first considers functions f that are translates of Gaussian
functions. There is an explicit formula for the Fourier transform of a Gaussian
function. The general case follows by a density argument.
2. Given this result (10), we proceed as follows. Let us define Ω(t) by

(13) Ω(t) ≡ UV (t)∗U0(t).
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From this definition, we compute for any f ∈ L1(Rd) ∩ L2(Rd)

(Ω(t)− 1)f =
∫ t

0

d

ds
UV (s)∗U0(s)f ds

= i

∫ t

0

UV (s)∗V U0(s)f ds.(14)

Since U0(t) maps L2(Rd) to itself and V ∈ L∞0 (Rd), the integral on the right is
well-defined. To prove the existence of the limit, consider 0 << t1 < t2 and note
that from (14) and the estimate (10), we have∥∥∥∥∫ t2

t1

UV (s)∗V U0(s)f ds
∥∥∥∥ ≤ ‖V ‖L2(Rd)

∫ t2

t1

‖U0(s)f‖L∞(Rd) ds

≤ Cd‖V ‖L2(Rd) ‖f‖1
∫ t2

t1

s−d/2 ds

≤ C̃d‖V ‖L2(Rd)‖f‖1(t
1−d/2
1 − t

1−d/2
2 ).(15)

It follows that for d ≥ 3, we have the bound

(16) ‖(Ω(t2)− Ω(t1)f‖ ≤ C̃d‖V ‖‖f‖1(t1−d/2
1 − t

1−d/2
2 ).

Consequently, for any sequence tn →∞, the sequence of vectors Ω(tn)f is a norm-
convergent Cauchy sequence so limt→∞Ω(t)f ≡ F+ exists. We must show that
the map f ∈ L1(Rd) ∩ L2(Rd) → F+ defines a linear bounded operator. Since
‖Ω(tn)f‖ ≤ ‖f‖L2(Rd), for any tn, it follows that ‖F+‖ ≤ ‖f‖. This defines Ω+ :
f → F+ on a dense domain L1(Rd) ∩ L2(Rd). A densely-defined bounded linear
operator can be extended to H without increasing the norm. Finally, one verifies
that s− limt→∞Ω(t) = Ω+ by approximating any g ∈ H by a sequence in L1(Rd)∩
L2(Rd) and using a triangle inequality argument. �

The simplicity of this proof relies on the estimate (10) for the group U0(t). It is
more difficult to consider the strong limit of U0(t)∗UV (t) since no general formula
is available for UV (t)f .

2.2. Properties of wave operators. The wave operators Ω± are bounded oper-
ators on H with ‖Ω±‖ = 1. They satisfy a number of important properties.

First, they are partial isometries in the sense that E± ≡ Ω∗±Ω± are orthogonal
projections. In our case, E± = I, the identity operator on H. In the general case,
the operator E± is the projection onto the continuous subspace of H0. For any
f, g ∈ H, we have

(17) (Ω±f,Ω±g) = (f,E±g) = (E±f,E±g),

so that

(18) ‖Ω±f‖ = ‖E±f‖.
It follows that Ω± are isometries on E±H and that the kernel of Ω± is (1−E±)H.
We have that Ω±E± = Ω±. The subspaces of H given by E±H are called the initial
spaces of the partial isometries Ω±.

Second, the adjoints Ω∗± are partial isometries. Since (Ω∗±)∗Ω∗± = Ω±Ω∗±, the
operator F± ≡ Ω±Ω∗± satisfies F 2

± = Ω±(Ω∗±Ω±)Ω∗± = Ω±EΩ∗± = F±, and in
a similar manner F ∗± = F±, so F± are orthogonal projections. It follows that
F±Ω∗± = Ω∗± and that ‖Ω∗±f‖ = ‖F±f‖. One can show that F± are the orthogonal
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projections onto the closed ranges of the wave operators Ran Ω± = F±H. The
subspaces F±H are called the final subspaces of the partial isometries Ω±.

Proposition 2. The wave operators satisfy the following intertwining relations:

Ω±U0(t) = UV (t)Ω±
U0(t)Ω∗± = Ω∗±UV (t).(19)

Proof. These relations follow from the existence of the wave operators and the
simple properties of the unitary evolution groups. For any f ∈ H, we have

UV (t)Ω+f = lim
s→∞

UV (t)UV (s)∗U0(s)f

= lim
s→∞

[UV (s− t)∗U0(s− t)]U0(t)f

= lim
u→∞

[UV (u)∗U0(u)]U0(t)f

= Ω+U0(t)f,(20)

proving the first intertwining relation. The second is proven in the same manner.
�

2.3. Asymptotic completeness. The existence of the wave operators
Ω±(HV ,H0) means the existence of a orthogonal projectors onto the
initial space E± ≡ Ω±(HV ,H0)∗Ω±(HV ,H0) = I and final subspaces
F± ≡ Ω±(HV ,H0)Ω±(HV ,H0)∗ that are the ranges of the wave operators
Ω±(HV ,H0). The range of the wave operators must be contained in the continuous
spectral subspace of HV .

Definition 1. The pair of self-adjoint operators (H0,HV ) is said to be asymptot-
ically complete if F−H = F+H = Econt(HV )H, that is, if Ran Ω− = Ran Ω+ =
Econt(HV )H.

In our situation, with H0 = −∆, the spectrum of H0 is purely absolutely con-
tinuous and Econt(H0)H = H. In particular, E± = 1H. Also, neither operator H0

nor HV has singular continuous spectrum. In more general situations, one needs
to prove that the perturbed operator HV has no singular continuous spectrum. In
these more general cases, the subspace Hcont(HV ) must be taken as the absolutely
continuous spectral subspace.

One can also consider wave operators Ω±(H0,HV ) defined by switching the order
of the unitary operators in (8):

(21) Ω±(H0,HV ) ≡ s− lim
t→±∞

U0(−t)UV (t)Econt(HV ).

At first sight, it would seem that the existence of these wave operators would be
equivalent to the existence of Ω±(HV ,H0). However, we have no explicit control
over the dynamics generated by HV such as formula (11). Consequently, it is
difficult to use the Cook-Hack method to prove the existence of the wave operators
Ω±(H0,HV ). In fact, the existence of the wave operators Ω±(H0,HV ) is equivalent
to asymptotic completeness.

Proposition 3. Suppose that the wave operators Ω±(HV ,H0) exist. Then the pair
of operators (H0,HV ) are asymptotically complete if and only if the wave operators
Ω±(H0,HV ) exist.
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Proof. 1. Suppose that both sets of wave operators exist. Then, we know that the
projection Econt(HV ) = Ω±(HV ,HV ). But, we have

(22) UV (−t)UV (t) = UV (−t)U0(t) · U0(−t)UV (t),

from which it follows that

(23) Ω±(HV ,HV ) = Ω±(HV ,H0)Ω∓(H0,HV ).

This implies that Hcont(HV ) ⊂ Ran Ω±(HV ,H0). Since the existence of
Ω±(HV ,H0) means that Ran Ω±(HV ,H0) ⊂ Hcont(HV ), these two inclusions
mean that Ran Ω+(HV ,H0) = Ω−(HV ,H0) = Hcont(HV ).
2. To prove the other implication, we assume that the wave operators Ω±(HV ,H0)
exist and are asymptotically complete. Then, for any φ ∈ Hcont(HV ), there exists
a ψ ∈ H so that φ = Ω+(HV ,H0)ψ. This means that U0(t)ψ − UV (t)φ con-
verges to zero as t → +∞. By unitarity of the operator U0(t), this means that
limt→+∞ U0(−t)UV (t)φ = ψ for all φ ∈ Hcont(HV ). This implies the existence of
Ω+(H0,HV ). The proof of the existence of the other wave operator is analogous. �

We now turn to proving the existence of the wave operators Ω∓(H0,HV ). Many
methods have been developed over the years in order to do this. The classic result of
Birman [31, Theorem XI.10] is perhaps the simplest to apply to our simple two-body
situation. There are more elegant and far-reaching methods. The Enss method, in
particular, is based on a beautiful phase-space analysis of the scattering process.
A thorough account of the Enss method may be found in Perry’s book [27]. Perry
combined the Enss method with the Melin transform in [26] to present a new, clear,
and short proof of asymptotic completeness for two-body systems more general than
those considered here. Finally, the problem of asymptotic completeness for N -body
Schrödinger operators with short-range, two-body potentials, was solved by Sigal
and Soffer [38]. They developed a very useful technique of local decay estimates.

In preparation, we recall that a bounded operator K is in the trace class if the
following condition is satisfied. The singular values of a compact operator A are
given by µj(A) =

√
λj(A∗A), where {λj(B)} are the eigenvalues of B. We say that

K is in the trace class if
∑

j µj(K) <∞. We say that K is in the Hilbert-Schmidt
class if

∑
j µj(K)2 < ∞. We refer to [29] or [39] for details concerning the von

Neumann-Schatten trace ideals of bounded of operators.

Theorem 1. Let V ∈ L∞0 (Rd) be a real-valued potential and d ≥ 3. Then the pair
(H0,HV )is asymptotically complete.

Proof. 1. By Proposition 3, it suffices to prove that Ω±(H0,HV ) exist since we know
from Proposition 1 that the wave operators Ω±(HV ,H0) exist. For any interval
I ⊂ R and self-adjoint operator A, let EI(A) denote the spectral projection for A
and the interval I. In the first step, we note that

(24) EI(H0)V EI(HV ), EI(HV )V EI(H0) ∈ I1.

The trace class property of these operators is easily demonstrated by proving
that |V |1/2R0(i)k is a Hilbert-Schmidt operator for k > d/2 and noting that
EI(H0)R0(i)−k is a bounded operator.
2. Next, we need the following result called Pearson’s Theorem in [31, Theorem
XI.7]. Let a > 0 and define the bounded operator Ja ≡ E(−a,a)(H0)E(−a,a)(HV ).
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The trace class property (24) means that H0Ja − JaHV ∈ I1. The main result of
[31, Theorem XI.7] is that

(25) s− lim
t→±∞

U0(t)∗JaUV (t)Econt(HV )

exists. Let 0 < a0 < a and choose φ ∈ E(−a0,a0)(HV )Econt(HV )H. We then have

(26) U0(t)∗E(−a,a)(H0)UV (t)φ = U0(t)∗JaUV (t)φ,

so by (25), the strong limit of the term on the left in (26) exists.
3. We can now write the expression that gives the wave operator acting on any
φ ∈ E(−a0,a0)(HV )Econt(HV )H:

(27) U0(t)∗UV (t)φ = U0(t)∗[E(−a,a)(H0) + ER\(−a,a)(H0)]UV (t)φ.

Since the strong limit of the first term on the right in (27) exists by (26), it suffices
to prove that

(28) lim
a→∞

{
sup
t∈R

‖U0(t)∗ER\(−a,a)(H0)UV (t)φ‖
}

= 0.

Once this is proven, we can first take a→∞ and then a0 →∞ so that the limit in
(27) holds for any φ ∈ Econt(HV )H.
4. To prove (28), we need some estimates. Let f(s) = s2 + 1 ≥ 1. The fact that V
is relatively H0-bounded means that

(29) ‖f(HV )f(H0)−1‖ < C1 <∞.

Next, recall that φ ∈ E(−a0,a0)(HV )H, for 0 < a0 < a, so that

(30) ‖f(HV )UV (t)φ‖ ≤ sup
|s|≤a0

f(s) = a2
0 + 1 <∞.

Finally, since f is invertible, we have

(31) ‖f(H0)−1ER\(−a,a)(H0) ≤
[

inf
|s|≥a0

f(s)
]−1

= (a2 + 1)−1.

Note that this vanishes as a→∞.
5. Returning to (28), we write the norm as

‖U0(t)∗ER\(−a,a)(H0)UV (t)φ‖
≤ ‖U0(t)∗ · f(H0)−1ER\(−a,a)(H0) · f(H0)f(HV )−1 · f(HV )UV (t)φ‖
≤ ‖f(H0)−1ER\(−a,a)(H0)‖ ‖f(H0)f(HV )−1‖ ‖f(HV )UV (t)φ‖
≤ C1(a2

0 + 1)(a2 + 1)−1,(32)

independently of t. Taking a→∞ proves (28). �

The asymptotic completeness of (H0,HV ) means that the absolutely continuous
parts of each operator are unitarily equivalent. Recall that our condition on the
real-valued potential V ∈ L∞0 (Rd) means that V (H0 + i)−1 is compact. By Weyl’s
Theorem (see, for example, [14, Theorem 14.6]), the essential spectrum of HV is
the same as the essential spectrum of H0 that is [0,∞). Hence, the perturbation
can add at most a discrete set of isolated eigenvalues with finite multiplicities. The
property of asymptotic completeness goes beyond this and establishes the unitary
equivalence of the absolutely continuous components.
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3. The scattering operator

The existence of the wave operators Ω±(HV ,H0) guarantees the existence of the
asymptotic states f±. For any f ∈ Ran Ω±(HV ,H0) ⊂ Econt(HV )H, we have
f± = Ω±(HV ,H0)∗f . The S-operator maps f− to f+. It is a bounded operator on
L2(Rd). Furthermore, the S-operator commutes with the free time evolution U0(t).
This allows for a reduction of the S-operator to a family of operators S(λ) defined
on L2(Sd−1) called the S-matrix.

3.1. Basic properties of the S-operator. An important use of the wave oper-
ators is the construction of the S-operator on H. For any f ∈ Ran Ω±(HV ,H0),
we have from section 2.1 that f± = Ω±(HV ,H0)∗f , or, for example, f = Ω−f−.
As a result, we can compute a formula for the map f− → f+ in terms of the wave
operators: Sf− = f+ = Ω∗+f = Ω∗+Ω−f−. Consequently, the S-operator is defined
as the bounded operator

(33) S ≡ Ω∗+Ω− : H → H.

The scattering operator is a partial isometry on L2(Rd). To prove this, we need to
show that S∗S is an orthogonal projection. This follows from the properties of the
wave operators:

(34) S∗S = ((Ω+)∗Ω−)∗(Ω+)∗Ω− = (Ω−)∗[Ω+(Ω+)∗]Ω− = (Ω−)∗F+Ω−.

Since Ran Ω− ⊂ F+H, we have F+Ω− = Ω−, so from (34), S∗S = F− = Econt(H0).
In our case, this is the identity operator on H.

Since Ran S ⊂ Ran Ω∗+ ⊂ Econt(H0)H, we have that S : Econt(H0)H →
Econt(H0)H. An essential property of the S-operator is given in the following
proposition.

Proposition 4. The S-operator commutes with the free time evolution: [S,U0(t)] ≡
SU0(t)− U0(t)S = 0.

Proof. This follows from the definition S = ω∗+Ω− and the intertwining properties
(19):

(35) SU0(t) = Ω∗+UV (t)Ω− = (UV (−t)Ω+)∗Ω− = (Ω+U0(−t))∗Ω− = U0(t)S.

�

The key property of asymptotic completeness has important consequences for
the S-operator.

Theorem 2. Suppose the pair of self-adjoint operators (H0,HV ) is asymptotically
complete. Then, the S-operator satisfies E0(I)S = SE0(I), for any Lebesgue mea-
surable I ⊂ R. Furthermore, the S-operator is a unitary operator on L2(Rd).

3.2. The S-matrix. Because the S-operator commutes with spectral family for
H0, both operators admit a simultaneous spectral decomposition. This is achieved
with the Fourier transform. We define the Fourier transform of f ∈ S(Rd) by

(36) (Ff)(k) ≡ (2π)−d/2

∫
Rd

e−ik·xf(x) ddx.

The inverse Fourier transform is defined, for any g ∈ S(Rd), by

(37) (F−1g)(x) ≡ (2π)−d/2

∫
Rd

eik·xg(k) ddk.
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the Fourier transform extends to a unitary map on L2(Rd). Note that for H0 = −∆,
and f ∈ S(Rd), we have

(38) (F (H0f))(k) = |k|2(Ff)(k).

It is convenient to write k = λω ∈ Rd, where λ ∈ [0,∞) and ω ∈ Sd−1. With this
decomposition a function f(k) may be viewed as a function on Sd−1 parameterized
by λ ∈ [0,∞).

We need a family of maps from L2(Rd) → L2(Sd−1) parameterized by the energy
λ. These maps E±(λ) can be defined via the Fourier transform (36). For λ ∈ R,
and any f ∈ S(Rd), we define

(39) (E±(λ)f)(ω) ≡ (2π)−d/2

∫
Rd

e±iλx·ωf(x) ddx, ω ∈ Sd−1.

The transpose of these maps, tE±(λ) : L2(Sd−1) → L2(Rd).
The formula for the S-matrix involves the resolvent RV (λ) ≡ (HV − λ2) of HV .

We will the resolvent in detail in section 4. Provided Imλ2 6= 0 and −λ2 is not
an eigenvalue of HV , the resolvent RV (λ) is a bounded operator. We need to
understand the behavior of V RV (λ+ iε)V , for λ ∈ R, in the limit as ε→ 0. That
this limit exists as a compact operator is part of the limiting absorption principle
that is discussed in section 4.1. We will write V RV (λ+ i0)V for this limit. Recall
from section 3.2 that the singular values of a compact operator A are given by
µj(A) =

√
λj(A∗A), where {λj(B)} are the eigenvalues of B, and that K is in the

trace class if
∑

j µj(K) <∞.

Theorem 3. Assume that the pair (H0,HV ) is asymptotically complete with H0 =
−∆. Then the S-matrix is the unitary family of operators S(λ), for λ ∈ R, on
L2(Sd−1) given by

(40) S(λ) = 1L2(Sd−1) − πiλd−2E−(λ)(V − V RV (λ+ i0)V )tE+(λ).

The operator A(λ) is the scattering amplitude and given by

(41) A(λ) ≡ −πiλd−2E−(λ)(V − V RV (λ+ i0)V )tE+(λ)

is in the trace class.

We can also express the S-matrix in terms of localization operators in the case
the support of V is compact. We assume that suppV ⊂ B(0, R1). We choose
two other length scales so that 0 < R1 < R2 < R3 < ∞. Let 0 ≤ χj ∈ C2

0 (Rd)
have the property that χjV = V and suppχ2 ⊂ B(0, R2) and suppχ3 ⊂ B(0, R3).
Finally, let W (φ) denote the commutator W (φ) ≡ [−∆, φ] for any φ ∈ C2(Rd).
The following representation is due to Petkov and Zworski [28].

Theorem 4. Let V ∈ C2
0 (Rd) and consider the S-matrix S(λ), λ ∈ R, as a unitary

operator on L2(Sd−1). Then, the S-matrix has the form

(42) S(λ) = 1L2(Sd−1) +A(λ), λ ∈ R,

where A(λ) is in the trace class. Explicitly, the scattering amplitude A(λ) has the
form

(43) A(λ) = cdλ
d−2E−(λ)W (χ2)RV (λ)W (χ1)tE+(λ),

where the constant cd = −i(2π)−d2(1−d)/2.
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4. The resolvent and resonances

We now switch our perspective and return to the study of the resolvent of the
Schrödinger operatorHV . We will connect these results with the S-matrix in section
4.5. We recall from section 2 that the spectrum of a self-adjoint operator A, denoted
by σ(A), is a closed subset of the real line. The complement of the spectrum is called
the resolvent set of A, denoted by ρ(A) ≡ C\σ(A). The resolvent of a self-adjoint
operator A is defined, for any z ∈ ρ(A), as the bounded operator RA(z) = (A−z)−1.
It is a bounded operator-valued analytic function on ρ(A). This means that about
any point z0 ∈ ρ(A), the resolvent RA(z) has a norm convergent power series of the
form

(44) RA(z) =
∞∑

j=0

Aj(z − z0)j ,

for bounded operators Aj depending on z0. We note that for a self-adjoint operator
A, the set C\R is always in the resolvent set.

For a Schrödinger operator HV = −∆+V , we reparameterized the spectrum by
setting z = λ2 and write RHV

(z) = RV (λ). Under this change of energy parameter,
the spectrum in the complex λ-plane is the union of the line Imλ = 0 and at most
finitely-many points of the form iλj on the positive imaginary axis λj > 0. These
points correspond to the negative eigenvalues of HV so that z = −λ2

j .
Let χV ∈ C∞0 (R) be a compactly-supported function so that χV V = V . We are

most concerned with the properties of the localized resolventRV (λ) ≡ χV RV (λ)χV .
The operator-valued function RV (λ) is defined for Imλ > 0 and λ 6= iλj , with
λj > 0 and −λ2

j an eigenvalue of HV . We would like to find the largest region in
the complex λ-plane on which RV (λ) can be defined.

4.1. Limiting absorption principle. One might first ask if the bounded operator
RV (λ) has a limit as Imλ→ 0, from Imλ > 0. That is, does the boundary-value of
this operator-valued meromorphic function exist as a bounded operator for λ ∈ R?
Because of the weight functions χV the answer to this question is yes. In more
general settings, this result is part of what is referred to as the limiting absorption
principle (LAP). The LAP plays an important role in scattering theory.

Theorem 5. The meromorphic bounded operator-valued function RV (λ) on the
open set ρ+(HV ) ≡ {λ ∈ C | Imλ > 0,−λ2 6∈ σdis(HV )} admits continuous bound-
ary values RV (λ) for λ ∈ R, except possibly at λ = 0. That is, limε→0+ RV (λ+ iε)
exists for all λ ∈ R\{0}, and is a bounded, continuous operator-valued function on
that set.

The proof of this is given for more general potentials and N -body Schrödinger
operators in, for example, [9, chapter 4]. The key ingredient is a local commutator
estimate called the Mourre estimate, due to E. Mourre [22]. Let A = (1/2)(x · ∇+
∇ · x) be the generator of the unitary group implementing the dilations x → eθx,
for θ ∈ R, on L2(Rd). One computes the following commutator:

(45) [HV , A] = 2H0 − x · ∇V = 2HV − (2V + x · ∇V ).

Let I ⊂ R be a closed interval. Let EV (I) be the projector for HV and the interval
I. We conjugate the commutator in (45) by this spectral projector:

(46) EV (I)[HV , A]EV (I) = 2EV (I)HV EV (I)−K(V, I),
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where K(V, I) ≡ EV (I)(2V +x · ∇V )EV (I) is a compact, self-adjoint operator due
to the properties of V .

We now assume that there are no eigenvalues ofHV in the interval I. For I ⊂ R+,
this means that there are no positive eigenvalues ofHV . In our situation, this is true
(see [9, chapter 4]). Then, the spectral theorem implies that s− lim|I|→0EV (I) =
0. Since K(V, I) is a compact operator and K(V, I) = K(V, I)EV (I), it follows
that lim|I|→0 ‖K(V, I)‖ = 0. Furthermore, if I = [E1, E2], then 2E(I)HV E(I) ≥
2E1. Given any ε > 0, we choose I so that |I| is so small that ‖K(V, I)‖ ≤
ε. Consequently, the commutator on the left in (14) is strictly nonnegative and
bounded below:

(47) EV (I)[HV , A]EV (I) ≥ (2E1 − ε)EV (I) ≥ 0, |I| = E2 −E1 sufficiently small.

One of the main results of Mourre theory is that for any interval I for which
a positive commutator estimate of the form (47) holds, the boundary value of the
weighted resolvent exists. More precisely, for any α > 1, one has

(48) lim
ε→0+

{sup
E∈I

‖(A2 + 1)−α/2(HV − E − iε)−1(A2 + 1)−α/2‖} <∞.

This is often called the limiting absorption principle. Estimate (48) is proved using
a differential inequality-type argument. In our case, the function χV serves as the
weight for the resolvent. One also proves that the limit in (48) is continuous in
E ∈ I. If there are no embedded eigenvalues, as in our case, this holds for all
E > 0.

Let us summarize what we have proved so far. The cut-off resolvent RV (λ) is
meromorphic on C+ with poles having finite-rank residues at at most finitely-many
values iλj , with λj > 0 such that −λ2

j is an eigenvalue of HV . Using the LAP, we
can extend the cut-off resolvent RV (λ) onto the real axis as a bounded operator
RV (λ), for λ ∈ R\{0}. This extension is continuous in λ. Hence, the cut-off
resolvent is meromorphic on C+ and continuous on C+\{0}.

4.2. Analytic continuation of the cut-off resolvent of H0. Our cut-off resol-
vent RV (λ) is meromorphic on C+ and continuous on the real axis, except possibly
at zero. It is now natural to ask if the operator has a meromorphic extension to
the entire complex λ-plane as a bounded operator. We first consider the simpler
case when V = 0. In this case, let χ ∈ C∞0 (Rd) be any compactly-supported cut-off
function and consider the compact operator R0(λ) ≡ χR0(λ)χ. We mention that
the kernel of this operator is explicitly given by a Hankel function:

(49) R0(λ)(x, y) =
i

4
χ(x)

(
λ

2π|x− y|

)(d−2)/2

H
(1)
(d−2)/2(λ|x− y|)χ(y),

where H(1)
j (s) is the Hankel function of the first kind and index j. We remark that

the LAP is not necessary in order to construct an analytic continuation of the free
cut-off resolvent RV (λ). An alternate and very nice method, based on the explicit
formula (49), is presented in Vodev’s review article [44].

We are tempted to define the continuation R̃0(λ) of R0(λ) for Imλ < 0 as the
operator χR0(−λ)χ since, if λ ∈ C−, then −λ ∈ C+ and χR0(−λ)χ is well defined.
Clearly, R̃0(λ) ≡ χR0(−λ)χ for Imλ < 0 is a meromorphic function in C−. The
problem with extension is that the two functions R0(λ) and R̃0(λ) do not match
up on the real axis.
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In order to understand this, recall that in the z-plane, the resolvent (H0−z)−1 is
analytic on C\[0,∞). For λ0 > 0 and ε > 0, we are interested in the discontinuity
of the resolvent across the positive z-axis at the point λ2

0 > 0. We can measure this
by computing the following limit of the difference of the resolvents from above and
below the point λ2

0 > 0:

(50) (H0 − (λ2
0 + iε))−1 − (H0 − (λ2

0 − iε))−1,

as ε → 0. The point z+ = λ2
0 + iε has two square roots in the λ-plane. Let λ̃0 ≡√

λ4 + ε2. For z+, let θ be the angle in the first quadrant so that 0 ≤ θ < π/2. Then,
the the two square roots are ±λ̃0[cos(θ/2) + i sin(θ/2)]. The positive square root
lies in C+ in the λ-plane so we work with this root λ+(ε) ≡ λ̃0[cos(θ/2)+i sin(θ/2)].
Similarly, the point z− = λ2

0 − iε has two square roots ±λ̃0[cos(θ/2) − i sin(θ/2)].
Note that because z− lies in the fourth quadrant, the imaginary part is negative.
We choose the negative square root of z− because it lies in C+ and call it λ−(ε).
Finally, for ε small, we may write λ±(ε) = ±λ0 + iε ∈ C+. Consequently, the jump
discontinuity in (50) corresponds to studying

(51) lim
ε→0

[R0(λ0 + iε)−R0(−λ0 + iε)],

where we write ε now for ε′. Both terms in (51) are well-defined since they have
positive imaginary parts.

We will compute the limit as ε → 0 in (51) and show that it is nonzero. Fur-
thermore, we will see that the limit is analytic on C. This is the term that must
be added to R0(−λ), for Imλ < 0, in order to obtain a function continuous across
Imλ = 0. We follow a calculation in [19, sections 1.5-1.6]. For f ∈ C∞0 (Rd) and
Imλ > 0, we have

(52) (R0(λ)f)(x) = (2π)−d/2

∫
Rd

eiξ·x (Ff)(ξ)
(ξ2 − λ2)

ddξ.

The Fourier transform Ff is a Schwartz function so it decays rapidly in |ξ| (see,
for example, [30, section IX.1, Theorem IX.1]). Since Imλ > 0, this guarantees
that the integral in (52) is absolutely convergent. Switching to polar coordinates
ξ = ρω, with ρ ≥ 0 and ω ∈ Sd−1, we obtain for the integral

(53)
∫

Rd

eiξ·x (Ff)(ξ)
(ξ2 − λ2)

ddξ =
∫

Sd−1
dω

∫ ∞

0

dρ eiρω·x ρ
n−1(Ff)(ρω)
(ρ2 − λ2)

.

In order to compute R0(λ0 + iε), we deform the ρ-contour into the lower-half
complex ρ-plane in a small, counter-clockwise oriented semicircle centered at λ0.
The Fourier transform Ff extends to an analytic function (see, for example [30,
section IX.3]) so there is no difficulty with this. Similarly, in order to compute
R0(−λ0 + iε), we note that this is the same as computing the integral in (53) with
λ = λ0− iε. This allows us to deform the ρ-integral into the upper-half complex ρ-
plane and integral around a small, clockwise semicircle centered at λ0. Subtracting
the two terms as in (51), we obtain

(54) R0(λ0 + iε)−R0(−λ0 + iε) =
∫

Sd−1
dω

∫
Γ(λ0)

dρ eiρω·x ρd−1(Ff)(ρω)
(ρ2 − (λ0 + iε)2)
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where Γ(λ0) is a counter-clockwise oriented circle about λ0 > 0. Evaluating the
integral by the residue theorem, we obtain for λ0 > 0,
(55)

lim
ε→0

[(R0(λ0 +iε)−R0(−λ0 +iε))f)(x)] =
i

2
λd−2

0

(2π)(d−1)/2

∫
Sd−1

dω (Ff)(λ0ω) eiλ0ω·x.

We define the kernel M(λ;x, y) by

(56) M(λ;x, y) ≡ i

2
1

(2π)d−1/2

∫
Sd−1

dω eiλω·(x−y).

Undoing the Fourier transform in (55), we can write the limit in (55) as

(57) lim
ε→0

[(R0(λ0 + iε)−R0(−λ0 + iε))f)(x)] = λd−2
0

∫
Rd

M(λ0;x, y)f(y) ddy.

Because the integration is over a compact set, the sphere, the kernel M(λ;x, y)
to an analytic function on C. Furthermore, recalling that we have compactly sup-
ported cut-off functions, the localized kernel

(58) M(λ;x, y) ≡ χ(x)M(λ;x, y)χ(y),

is square integrable for any λ ∈ C. Hence, the operator M(λ) is an analytic,
operator-valued function on C with values in the Hilbert-Schmidt class of operators
(see [29, section VI.6]).

Consequently, we can then define an extension R̃0(λ) of the cut-off resolvent
R0(λ) from Imλ > 0 to C−\(−∞, 0] by

(59) R̃0(λ) ≡ χR̃0(λ)χ = χR0(−λ)χ+ λd−2χM(λ)χ, Imλ < 0.

We then have for λ > 0,

lim
ε→0

χR̃0(λ− iε)χ = lim
ε→0

[χR0(−λ+ iε)χ+ λd−2χM(λ− iε)χ]

= χR0(λ)χ,(60)

and thus we have continuity across the real axis. It can be checked that this actually
gives analyticity in a neighborhood of R\(−∞, 0]. As for the open negative real
axis (−∞, 0), we note that M(−λ) = M(λ) since the sphere is invariant under the
antipodal map ω → −ω.

Proposition 5. Suppose that the dimension d ≥ 3 is odd. The cut-off resolvent
χR0(λ)χ of the Lapalcian admits an analytic continuation as a compact operator-
valued function to the entire complex plane. In the case d = 1, there is an isolated
pole of order one at λ = 0. When the dimension d ≥ 4 is even, the cut-off resol-
vent admits an analytic continuation as a compact operator-valued function to the
infinite-sheeted Riemann surface of the logarithm Λ. In the case d = 2, there is a
logarithmic singularity at λ = 0.

4.3. Meromorphic continuation of the cut-off resolvent of HV . We can use
Proposition 5 and the second resolvent formula to obtain a meromorphic contin-
uation of the resolvent RV (λ). First, we write the second resolvent equation for
λ ∈ C+,

(61) RV (λ) = R0(λ)−RV (λ)V R0(λ).
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Conjugating this equation by the cut-off function χV and using the fact that χV V =
V , we obtain

(62) RV (λ) = χR0(λ)χ−RV (λ)V χR0(λ)χ.

Solving this for RV (λ), we obtain

(63) RV (λ)(1 + V χV R0(λ)χV ) = χV R0(λ)χV .

We use this equality in order to construct the meromorphic continuation of RV (λ).
The right side of (63) has an analytic continuation as does the second factor on

the left. We need to prove that this factor (1 + V χV R0(λ)χV ) has a continuation
that is boundedly invertible, at least away from a discrete set of λ.

Recall that an operator of the form 1 +K, for a bounded operator K, is bound-
edly invertible if, for example, ‖K‖ < 1. The inverse is constructed as a norm
convergent geometric series. There is another sufficient condition for invertibil-
ity. If the operator K is compact, then the Fredholm Alternative Theorem [14,
Theorem 9.12] states that either K has an eigenvalue −1, and consequently, the
operator 1 +K is not injective, or 1 +K is boundedly invertible. In our expression
K(λ) = V χV R0(λ)χV is compact as long as λ ∈ ρ(H0). Furthermore, it follows
from the LAP and (section 4.2) that K(λ) is a compact operator-valued analytic
function. In this setting, the analytic Fredholm Theorem [29, Theorem VI.14] is
most useful.

Theorem 6. Suppose that K(λ) is a compact operator-valued analytic function on
a open connected set Ω ⊂ C. Then, either the operator 1 +K(λ) is not invertible
for any λ ∈ Ω, or else it is boundedly invertible on Ω except possibly on a discrete
set D of points having no accumulation point in Ω. The operator is meromorphic
on Ω\D At those points, the inverse has a residue that is a finite-rank operator.

This theorem tells us that 1 + K(λ), the first factor on the right of (63) is
boundedly invertible for λ ∈ C except at a discrete set of points. Since we know
that Rχ(λ) is invertible for Imλ > 0, except for a finite number of points on the
positive imaginary axis corresponding to eigenvalues, it also follows from (63) that
the discrete set of points at which 1 + K(λ) fails to be invertible lie in C− if d is
odd, or on Λ\C+ if d is even. Consequently, the Analytic Fredholm Theorem allows
us to establish the existence of a meromorphic extension of Rχ(λ).

Proposition 6. Let V ∈ C2
0 (Rd) be a real-valued potential and let χV ∈ C∞0 (Rd)

be any function such that χV V = V . Then the cut-off resolvent Rχ(λ) admits a
meromorphic extension to C if d is odd and to Λ if d is even. The poles have
finite-rank residues.

4.4. Resonances of HV . Having constructed the meromorphic continuation of
the cut-off resolvent RV (λ), we can now define the resonances of HV .

Definition 2. Let V ∈ C2
0 (Rd) be a real-valued potential. The resonances of HV are

the poles of the meromorphic continuation of the compact operator Rχ(λ) occurring
in C−.

This definition can also be extended to complex-valued potentials. The residues
of the extension of RV (λ) at the poles are finite rank operators. If λ0 ∈ C− is a
resonance, then a resonance state ψλ0 ∈ H corresponding to λ0 is a solution to

(64) (1 + V χV R0(λ0)χV )ψλ0 = 0.
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The poles are independent of the cut-off function used provided it has compact
support and satisfies χV = V .

4.5. Meromorphic continuation of the S-matrix. The meromorphic contin-
uation of the cut-off resolvent RV (λ) permits us to mermorphically continue the
S-matrix S(λ) as a bounded operator on L2(Sd) from λ ∈ C+ to all of C or Λ
depending on the parity of d. For complex λ it is no longer unitary. The relation
S(λ)S(λ)∗ = 1, however, does continue in λ to all of C.

Theorem 7. The S-matrix S(λ) admits a mermorphic continuation to C if d is
odd, or to the Riemann surface Λ, if d is even, with poles precisely at the resonances
of HV . The order of the poles are the same as the order of the poles for HV and
the residues at these poles have the same finite rank.

For the Schrödinger operator HV , the resonances may be defined as the poles
of the meromorphic continuation of the cut-off resolvent RV (λ), or in terms of the
meromorphic continuation of the S-matrix S(λ). From formula (40), it follows that
the poles of the meromorphic continuation of the S-matrix are included in the poles
of the continuation of the resolvent. It is not always true that the scattering poles,
defined via the S-matrix, are the same as the resolvent poles. A striking example
where the scattering poles differ from the resolvent poles occurs for hyperbolic
spaces. However, in the Schrödinger operator case considered here, these are the
same. A proof is given by Shenk and Thoe [37].

5. Resonances: Existence and the counting function

The resonance set RV for a Schrödinger operator was defined in Definition 2
as the poles of the meromorphic continuation of the cut-off resolvent RV (λ) to C
for d ≥ 3 odd or to the Riemann surface Λ for d ≥ 4 even, together with their
multiplicities. There are two basic questions that arise:

(1) Existence: Do resonances exist for Schrödinger operators HV with our class
of potentials?

(2) Counting: How many resonances exist?

5.1. Existence of resonances. There are many different proofs of the existence
of resonances for various quantum mechanical systems. Resonances are considered
as almost bound states or long-lived states that eventually decay to spatial infinity.
To understand this physical description, let us consider the time evolution of a
resonance state ψ0 corresponding to a resonance energy z0 = E0 − iΓ (in the z-
parametrization), with Γ > 0. We can formally compute UV (t)ψ0 by expressing
the time evolution group as an integral of the resolvent over the energy

(65) UV (t)ψ0 = −2πi
∫

R
e−itERV (E) dE.

Performing a deformation of the contour to capture the pole of the resolvent at z0
and applying the residue theorem, one finds that the time evolution behaves like
e−iz0tψ0 = e−Γte−iE0tψ0. The factor e−itE0ψ0 has an oscillatory time evolution
similar to that of a bound state with energy E0, whereas the factor e−tΓ is an
exponentially decaying amplitude. The lifetime of the state is τ = Γ−1. This is,
roughly, the time it takes the amplitude to decay to e−1 times its original size. It is
important to note that there is no such state ψ0 ∈ H corresponding to a resonance
z0 in the sense that HV ψ0 = z0ψ0. The solutions of this eigenvalue equation are
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not in H. There are, however, approximate resonance states obtained by truncating
such ψ0 to bounded regions, say K ⊂ Rd. The truncated state χKψ0 ∈ H has an
approximate time evolution like e−Γte−iE0tχKψ0 showing that the amplitude of the
resonance state in the bounded region K decays exponentially to zero.

A typical situation for which resonances are expected to exist is the hydrogen
atom Hamiltonian HV = −∆ − |x|−1 acting on L2(R3), perturbed by an external
constant electric field Vpert(x) = Ex1 in the x1-direction. The total Stark hydrogen
Schrödinger operator is HV (E) = −∆ − |x|−1 + Ex1. When E = 0, the spectrum
of HV consists of an infinite sequence of eigenvalues En = −1/4n2 plus the half
line [0,∞). When E is turned on, the spectrum of HV (E) is purely absolutely
continuous and equal to exactly the entire real line. There are no eigenvalues!

It is expected that the bound states En of the hydrogen atom have become reso-
nances for E 6= 0. These finite-lifetime states are observed in the laboratory. These
resonances, in the z-parametrization, have their real parts close to the eigenvalues
En. Their imaginary parts are exponentially small behaving like e−α/E . This means
their lifetime is very long.

The proof of the existence of these resonances for the the Stark hydrogen Hamil-
tonian was given by Herbst [13] in 1979. The method of proof is perturbative in
that the electric field strength is assumed to be very small.

More generally, there are various models for which one can prove the existence of
resonances using the smallness of some parameter. The semiclassical approximation
is the most common regime. The quantum Hamiltonian is written as HV (h) =
−h2∆ + V0 + V1 and h is considered as a small parameter. For a discussion of
resonances in the semiclassical regime, see, for example, [14, Chapters 20–23]. For
more information on the semiclassical approximation for eigenvalues, eigenfunctions
and resonances, see, for example, the monographs [10, 18, 33].

If we inquire about the existence of resonances for the models studied here,
HV = −∆ + V , with V ∈ C∞0 (Rd), with no parameters, the proof is much harder
and requires different techniques.

Melrose [19] gave perhaps the first proof of the existence of infinity many reso-
nances for such HV . The proof holds for smooth, real-valued, compactly-supported
potentials V ∈ C∞0 (Rd), for d ≥ 3 odd. The proof requires two ingredients that
will be presented here without proof.

5.1.1. Small time expansion of the wave trace. The wave group WV (t) associated
with the Schrödinger operator HV is defined as follows. Let ∂t denote the partial
derivative ∂/∂t. Consider the wave equation associated with HV :

(66) (∂2
t −HV )u = 0, u(t = 0) = u0, ∂tu(t = 0) = u1.

The solution can be expressed in terms of the initial conditions (u0, u1). The time
evolution occurs on a direct sum of two Hilbert spaces HFE = {(u0, u1) |

∫
[|∇u0|2+

|u1|2] < ∞}. This is the space of finite energy solutions. In two-by-two matrix
notation, the time evolution acts as

(67) WV (t)
(
u0

u1

)
=
(

u
∂tu

)
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The infinitesimal generator of the wave group WV (t) is the two-by-two matrix-
valued operator

(68) AV ≡
(

0 1
HV 0

)
.

The evolution group WV (t) is unitary on HFE. Similarly, the free wave group W0(t)
is generated by A0 that is expressed as in (68) with V = 0. If HV ≡ −∆ + V ≥ 0,
then this operator can be diagonalized. The diagonal form is

(69)
( √

HV 0
0 −

√
HV

)
.

In this case, the wave groupWV (t) can be considered as two separate unitary groups
e±i

√
HV t each acting on a single component Hilbert space.

The basic fact that we need is that the map t ∈ R → Tr[WV (t)−W0(t)] is a dis-
tribution. This means that for any ρ(t), a smooth, compactly-supported function,
the integral

(70)
∫

R
dt ρ(t)Tr[WV (t)−W0(t)]

is finite and bounded above by an appropriate sum of norms of ρ. The distribution
has a singularity at t = 0 and the behavior of the distribution at t = 0 has been
well-studied. For d ≥ 3 odd, the wave trace has the following expansion as t→ 0:

Tr[WV (t)−W0(t)] =
(d−1)/2∑

j=1

wj(V )(−i)d−1−2jδ(d−1−2j)(t)

+
N∑

j=(d+1)/2

wj(V )|t|2j−d + rN (t),(71)

where the remainder rN (t) ∈ C2N−d(R). The first sum consists of derivatives of
the delta function δ(t) at zero. We recall that for any smooth function f , these
distributions are defined as 〈δj , f〉 = (−1)jf (j)(0). The second part of the sum con-
sists of distributions that are polynomial in t. The coefficients wj(V ) are integrals
of the potential V and its derivatives. These are often called the ‘heat invariants’.
The first three are:

w1(V ) = c1,d

∫
Rd

V (x) ddx

w2(V ) = c2,d

∫
Rd

V 2(x) ddx

w3(V ) = c3,d

∫
Rd

(V 3(x) + |∇V (x)|2) ddx,(72)

where the constants cj,d are nonzero and depend only on the dimension d.
For some insight as to why the trace in (71) exists, note that for ρ ∈ C∞0 (R), a

formal calculation gives

(73)
∫

R
ρ(t)Tr[WV (t)−W0(t)] dt = Tr( (Fρ)(AV )− (Fρ)(A0)).

The Fourier transform Fρ is a smooth, rapidly decreasing function. Because V has
compact support, the difference (Fρ)(AV ) − (Fρ)(A0) is in the trace class. This
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follows from the fact that the difference of the resolvents RV (z)k −R0(z)k is in the
trace class for Im z 6= 0 and k > d/2.

5.1.2. Poisson formula. The key formula that links the resonances with the trace
of the difference of the wave groups is the Poisson formula. In our context it was
proved by Melrose [20]. It is named this because of the analogy with the classical
Poisson summation formula. Let f ∈ C∞(Rd) be a Schwarz function meaning that
the function and all of its derivatives decay faster that 〈‖x‖〉−N , for any N ∈ N.
The classical Poisson summation formula states that

(74)
∑
k∈Zd

f(x+ k) =
∑
k∈Zd

(Ff)(k)e2πix·k.

The Poisson formula for the wave group states that

(75) Tr[WV (t)−W0(t)] =
∑

ξ∈RV

m(ξ)ei|t|ξ, t 6= 0,

where m(ξ) is the algebraic multiplicity of the resonance ξ. This multiplicity is
defined as the rank of the residue of the resolvent at the pole ξ or, equivalently, by
the rank of the contour integral:

(76) m(ξ) = Rank

(∫
γξ

R(s) ds

)
,

where γξ is a small contour enclosing only the pole ξ of the resolvent. It is important
to note that the Poisson formula (75) is not valid at t = 0.

5.1.3. Melrose’s proof of the existence of resonances. Melrose [19, section 4.3] ob-
served that the Poisson formula (75) and the trace formula (71) can be used together
to prove the existence of infinitely many resonances for Schrödinger operators.

Theorem 8. Let us suppose that d ≥ 3 is odd and that V ∈ C∞0 (Rd; R). Suppose
also that wj(V ) 6= for some j ≥ (d+1)/2. Then HV has infinitely many resonances.
In particular, for d = 3, since w2(V ) = c2

∫
V 2(x) dx, for a positive constant

c2 > 0, if V ∈ C∞0 (R3; R) is nonzero, then HV has an infinite number of resonances.

Proof. 1. Suppose that HV has no resonances. Then the right side of the Poisson
formula (75) is zero. On the other hand, it follows from the small time expansion
(71) and the assumption that wj(V ) 6= for some j ≥ (d + 1)/2 that for t > 0 the
right side of the expansion (71) is nonzero. Note that for t > 0 all the contributions
from the delta functions vanish. Hence we obtain a contradiction. Consequently,
there must be at least one resonance.
2. If there are only finitely-many resonances, then the sum on the right in (75) is
finite and the formula can be extended to t = 0. In particular, at t = 0 it is a
finite positive number greater than or equal to the number of resonances. On the
other hand, looking at the trace formula (71), if only one or more of the coefficients
wj(V ) 6= 0 for j > (d + 1)/2, then the trace is zero at t = 0 (the coefficients of
the derivatives of the delta functions being zero), so we get a contradiction. Hence,
at least one of the coefficients of a delta function term is nonzero. Then the trace
formula indicates that the distribution Tr[WV (t)−W0(t)] is not continuous at t = 0
whereas the Poisson formula indicates that it is continuous through t = 0, and we
again obtain a contradiction. Consequently, there must be an infinite number of
resonances. �
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We remark that in the even dimensional case for d ≥ 4. Sá Barreto and Tang
[36] proved the existence of at least one resonance for a real-valued, compactly-
supported, smooth nontrivial potential. Having settled the question of existence,
we now turn to counting the number of resonances.

5.2. The one-dimensional case: Zworski’s asymptotics. As with many prob-
lems, the one-dimensional case is special since many techniques of ordinary dif-
ferential equations can be used. The most complete result on resonances for
HV = −d2/dx2 +V on L2(R) with a compactly-supported potential was proven by
Zworski [46].

Theorem 9. Let V ∈ L∞0 (R). Then the number of resonances NV (r) with modulus
less that r > 0 satisfies:

(77) NV (r) =
2
π

(
sup

x,y∈supp V
|x− y|

)
r + o(r).

There are extensions of this result to a class of super-exponentially decaying po-
tentials due to R. Froese [11]. We will not comment further on the one-dimensional
case.

5.3. Estimates on the number of resonances: Upper bounds. The reso-
nance counting function counts the number of poles, including multiplicities, of the
meromorphic continuation of the cut-off resolvent in C− for d odd, and on Λ for d
even. We will concentrate on the d odd. For any r > 0, we define NV (r) as

(78) NV (r) = #{j | λj(V ) satisfies |λj(V )| ≤ r and Imλj(V ) < 0}.

This function is monotone increasing in r. It is the analogue of the eigenvalue
counting function NM(r) studied by Weyl to count the number of eigenvalues of
the Laplace-Beltrami operator on a compact Riemannian manifold M. The Weyl
upper bound on the eigenvalue counting function is

(79) NM(r) ≤ cdVol(M)〈r〉d,

where 〈r〉 =
√

1 + r2.
It is natural to ask if the resonance counting function NV (r) satisfies a similar

upper bound. Since Melrose’s early work [21], many people have established upper
bounds on NV (r) with increasing optimality. Zworski [49] presents a good survey
of the state-of-the-art up to 1994. The optimal upper bound, having the same
polynomial behavior as Weyl’s eigenfunction counting function (79), was achieved
by Zworski [47]. A significant simplification of the proof was given by Vodev [41].

Theorem 10. For d ≥ 3 odd, the resonance counting function NV (r) satisfies

(80) NV (r) ≤ C(d, V )〈r〉d,

for a constant 0 < C(d, V ) <∞ depending on d and V .

A sketch of the proof of this theorem will be given following the beautiful expo-
sition of Zworski [49, section 5], using Vodev’s simplification [41]. One basic idea
of the proof is to find a suitable analytic or meromorphic function that has zeros
exactly at the resonances. Suppose h(λ) is one such function analytic on C. Then
one can count the number of zeros using Jensen’s formula. This formula relates the
number of zeros of h to growth properties of h. If a circle of radius r > 0 crosses
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no zero of h, if h(0) 6= 0, and if ak are the zeros of h inside the circle, then Jensen’s
formula states that

(81)
Nh(r)∑
k=1

log
(

r

|ak|

)
=

1
2π

∫ 2π

0

log |h(reiθ)| dθ − log |h(0)|.

If we only sum over those zeros inside the circle of radius r/2, we have that
log(r/|ak|) ≥ log 2, so that

(82) Nh(r/2)[log 2] ≤ 1
2π

∫ 2π

0

| log |h(reiθ)|| dθ + | log |h(0)||.

This inequality shows that it suffices to bound h on circles of radius 2r in order to
count the number of zeros inside the circle of radius r > 0.

Proof. 1. The first observation is that the operator (V R0(λ)χV )d+1 is in the trace
class for Imλ ≥ 0. Consequently, the following determinant is well-defined:

(83) h(λ) ≡ det(1− (V R0(λ)χV )d+1).

This function is analytic on C+ with at most a finite number of zeros corresponding
to the eigenvalues of HV . It follows from (4.3) that this function has an analytic
continuation to all of C. Furthermore, the zeros of this function for Imλ < 0 include
with the resonances of HV that are given as the zeros of the analytic continuation
of 1 + V R0(λ)χV according to (63). The problem, then, is to count the number of
zeros of the analytic function h(λ) inside a ball of radius r > 0 in C. By Jensen’s
inequality (82), it suffices to obtain a growth estimate on h of the form

(84) |h(λ)| ≤ C1e
c2|λ|d .

2. We first estimate h in the half space Imλ ≥ 0 using the fact that V has compact
support contained inside of a bounded region Ω. Let −∆Ω ≥ 0 denote the Dirichlet
Laplacian on Ω. By Weyl’s bound (79), the jth eigenvalue λj(Ω) of −∆Ω grows
like λj(Ω) ∼ j2/d. Furthermore, we have ∆ΩV = ∆V . Using these ideas and the
simple inequality of the singular values µj(AB) ≤ ‖A‖µj(B), we have

µj(χV R0(λ)χV ) = µj((−∆Ω + 1)−1/2(−∆Ω + 1)1/2χV R0(λ)χV )

≤ ‖(−∆Ω + 1)1/2χV R0(λ)χV ‖ µj((−∆Ω + 1)−1/2)

≤ Cj−1/d.(85)

Since µm+k−1(AB) ≤ µk(A)µm(B), we have µ2j−1(A2) ≤ µj(A)2, and conse-
quently, for all large j

(86) µj((χV R0(λ)χV )d+1) ≤ Cj−(d+1)/d.

It follows that |h(λ)| ≤ C for Imλ ≥ 0.
3. For Imλ < 0, we make use of the following formula from scattering theory used
already in section 4.2. For λ ∈ R, we have

(87) χV (R0(λ)−R0(−λ))χV = cd(λd−2) tEχ(λ)Eχ(λ),

where Eχ(λ) : L2(Rd) → L2(Sd−1) is given by

(88) (Eχ(λ)g)(ω) ≡
∫

Rd

eiλω·xχV (x)g(x) ddx.
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This formula can be extended to all of C. We compute the singular values of the
operator on the left in (87):

(89) µj(χV (R0(λ)−R0(−λ))χV ) ≤ C|λ|d−2ec2|λ|µj(Eχ(λ)).

Since Eχ(λ)∗ : L2(Sd−1) → L2(Rd), the operator Eχ(λ)∗Eχ(λ) : L2(Sd−1) →
L2(Sd−1). This is a crucial observation since the operator acts on a d−1 dimensional
space. Without this reduction, one obtains an upper bound but with exponent d+1
rather than the optimal exponent d. In a manner similar to (85), we compute for
any m > 0,

µj(Eχ(λ)) ≤ µj((−∆Sd−1 + 1)−m(−∆Sd−1 + 1)mEχ(λ))

≤ ‖(−∆Sd−1 + 1)mEχ(λ))‖L2(Sd−1) µj((−∆Sd−1 + 1)−m)

≤ Cm(2m)!j−2m/(d−1)ec|λ|.(90)

This follows from the explicit formula for the kernel of Eχ(λ)),

(91) Eχ(λ)(ω, x) = e−iλω·xχV (x).

In particular, the factor (2m)! comes from differentiating the exponential factor.
Using Stirling’s formula for the factorial, we obtain from (89)–(90)

(92) µj(χV (R0(λ)−R0(−λ))χV ) ≤ |λ|d−2ec2|λ|Cm(2m+1)2m+(1/2)(j−1/(d−1))2m.

We now optimize over the free parameter m by choosing m ∼ j−1/(d−1). As a
result, we obtain

(93) µj(χV (R0(λ)−R0(−λ))χV ) ≤ ec|λ|e−cj1/(d−1)
.

4. We now combine (85) with (93). For this, we need Fan’s inequality for singular
values [39, Theorem 1.7] that states that

(94) µn+m+1(A+B) ≤ µm+1(A) + µn+1(B).

For Imλ < 0, we write

(95) µj(χV R0(λ)χV ) = µj([χV (R0(λ)−R0(−λ))χV ] + χV R0(−λ)χV ).

Applying Fan’s inequality (94) to the right side of (95), we find that for Imλ ≤ 0,
the singular values satisfy

(96) µj(χV R0(λ)χV ) ≤ ec|λ|e−cj1/(d−1)
+ cj−1/d.

Taking the (d+ 1)st power of the operators, as in (86), we find

(97) µj((χV R0(λ)χV )d+1) ≤ ec|λ|e−cj1/(d−1)
+ cj−(d+1)/d,

for a constant c > 0. As j →∞, the first term dominates until j ∼ [|λ|d−1], where
[·] denotes the integer part. We then use the Weyl estimate for the determinant
(see [39]), factorize the product using the first estimate in (97) for j ≤ [d|λ|d−1], to
obtain

|h(λ)| ≤ | det(1 + (V R0(λ)χV )d+1)|
≤ Π∞j=1(1 + µj((V R0(λ)χV )d+1))

≤
(
Π[d|λ|d−1]

j=1 eC|λ|
) (

Πj≥[d|λ|d−1](1 + c2j
−(d+1)/d)

)
≤ cec|λ|d .(98)
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This establishes (84) so by Jensen’s inequality (82) we obtain the optimal upper
bound on the resonance counting function. �

Upper bounds for super-exponentially decaying potentials in d ≥ 3 odd dimen-
sions were proved by R. Froese [12]. There are fewer results in even dimensions.
We refer to [7] for a discussion and the papers [15, 42, 43].

5.4. Estimates on the number of resonances: Lower bounds. One might
hope to have a lower bound on the number of resonances of the form

(99) NV (r) ≥ Cdr
d.

This is known to hold in two cases. The first case is Zworski’s result for d = 1. The
second is for a class of spherically symmetric potentials in dimension d ≥ 3 odd.
Zworski proved that if V (r) has the property that V ′(a) 6= 0, where a > 0 is the
radius of the support of V , then an asymptotic expansion holds for the number of
resonances:

(100) NV (r) = C2d+1r
d + o(rd), d ≥ 3 and odd.

In general, for V ∈ L∞0 (Rd) (or, even V ∈ C∞0 (Rd)), there is presently no known
proof of the optimal lower bound (99). There are some partial results for d ≥ 3
odd. These include nonoptimal lower bounds, estimates on the number of purely
imaginary poles for potentials with fixed sign, and counterexamples made from
certain complex potentials.

5.4.1. Nonoptimal lower bounds. For the case of d ≥ 3 odd, the first quantitative
lower bounds for the resonance counting function for nontrivial, smooth, real-valued
V ∈ C∞0 (Rd), not of fixed sign, were proved in [2]. In particular, it was proved there
that

(101) lim sup
r→∞

nV (r)
r(log r)−p

= ∞,

for all p > 1. For the same family of potentials, Sá Barreto [34] improved this to

(102) lim sup
r→∞

nV (r)
r

> 0.

We mention that, in particular, all these lower bounds require the potential to be
smooth.

Concerning lower bounds in the even dimensional case for d ≥ 4, Sá Barreto
[35] studied the resonance counting function NSaB(r) defined to be the number of
resonances λj with 1/r < |λj | < r and | arg λj | < log r. As r → ∞, this region in
the Riemann surface Λ opens like log r. Sá Barreto proved that for even d ≥ 4,

(103) lim sup
r→∞

NSaB(r)
(log r)(log log r)−p

= ∞,

for all p > 1.
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5.4.2. Purely imaginary poles. Lax and Phillips [17] noticed that for odd dimen-
sions d ≥ 3, the wave operator associated with exterior obstacle scattering has an
infinite number of purely imaginary resonances. They remarked that their proof
held for Schrödinger operators with nonnegative, compactly-supported, nontrivial
potentials. Vasy [40] used their method to prove that a Schrödinger operator HV

with a compactly-supported, bounded, real-valued potential with fixed sign (either
positive or negative) has an infinite number of purely imaginary resonances. These
resonances are poles of the meromorphic continuation of the resolvent of the form
−iµj(V ), with µj(V ) > 0. In the z = λ2 plane, these are located on the second
Riemann sheet of the square root function. Furthermore, Vasy is able to count
these poles and prove the following lower bound

(104) NV (r) ≥ Cdr
d−1.

This is not an optimal lower bound on the total number of resonances.
Recently, the author and T. J. Christiansen [7] proved that in even dimension

there are no purely imaginary resonances on any sheet for HV with bounded, pos-
itive, real-valued potentials with compact support.

5.4.3. Complex potentials. Most surprisingly, Christiansen [3] gave examples of
compactly supported, bounded complex-valued potentials having no resonances in
any dimension d ≥ 2! This result, while interesting in its own right, means that
any technique that provides a result of the type (99) must be sensitive to whether
the potential is real- or complex-valued.

6. Maximal order of growth is generic for the resonance counting
function

There is one general result that is a weak form of (99) due to the author and T.
J. Christiansen [5]. This result states that for almost all potentials V ∈ L∞0 (K),
for a compact subset K ⊂ Rd, real- or complex-valued, the lower bound holds in
the following sense as determined by the order of growth of the resonance counting
function NV (r).

Definition 3. The order of growth of the monotone increasing function NV (r) is
defined by

(105) ρV ≡ lim
r→∞

logNV (r)
log r

,

if the limit exists and is finite.

Because of the upper bound (80), the order of growth of the resonance counting
function is bounded from above as ρV ≤ d. We say that the order of growth is
maximal for a potential V if ρV = d. By “almost all potentials” referred to above,
we mean that the set of potentials in L∞0 (K), for a fixed compact subset K ⊂ Rd

with nonempty interior, for which the resonance counting function has maximal
order of growth, is a dense Gδ-set. Recall that a Gδ-set is a countable intersection
of open sets. One sometimes says that a property that holds for all elements in a
dense Gδ-set is generic.
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6.1. Generic behavior: odd dimensions. The basic theorem on generic behav-
ior is the following.

Theorem 11. [5] Let d ≥ 3 be odd and K ⊂ Rd be a fixed, compact set with
nonempty interior. Let MF (K) ⊂ L∞0 (K), for F = R or F = C, be the set
of all real-valued, respectively, complex-valued potentials in L∞0 (K) such that the
resonance counting function NV (r) has maximal order of growth. Then, the set
MF (K) is a dense Gδ set for F = R or F = C.

This holds for both real-valued and complex-valued potentials. By [3], we know
there are complex potentials with zero order of growth. An interesting open ques-
tion is whether there exist real-valued potentials in L∞0 (Rd) for which the resonances
counting function has less than maximal order of growth.

The proof of this theorem uses the S-matrix and its continuation to the entire
complex plane. In section 3, we defined the scattering matrix for the pair H0 = −∆
andHV = H0+V . The S-matrix S(λ), acting on L2(Sd−1), is the bounded operator
defined in (40). In the case that V is real-valued, this is a unitary operator for
λ ∈ R. Under the assumption that supp V is compact, the scattering amplitude
A(λ) : L2(Sd−1) → L2(Sd−1), defined in (41), is a trace class operator. Hence, the
function

(106) fV (λ) ≡ detS(λ),

is well-defined, at least for Imλ > 0 sufficiently large.
What are the meromorphic properties of fV (λ)? As proved in Theorem 7, the

S-matrix has a meromorphic continuation to the entire complex plane with finitely
many poles for Imλ > 0 corresponding to eigenvalues of HV , and poles in Imλ < 0
corresponding to resonances. We recall that if Imλ0 ≥ c0〈‖V ‖L∞〉, the multiplici-
ties of λ0, as a zero of detSV (λ), and of−λ0, as a pole of the cut-off resolventRV (λ),
coincide. Consequently, the function fV (λ) is holomorphic for Imλ > c0〈‖V ‖L∞〉,
and well-defined for Imλ ≥ 0 with finitely many poles corresponding to the eigen-
values of HV . Hence, the problem of estimating the number of zeros of fV (λ) in the
upper half plane is the same as estimating the number of resonances in the lower
half plane.

The estimates on fV (λ) are facilitated in the odd dimensional case by the well-
known representation of fV (λ) in terms of canonical products. Let G(λ; p) be
defined for integer p ≥ 1, by

(107) G(λ; p) = (1− λ)eλ+λ2/2+···+λp/p,

and define

(108) P (λ) = Πλj∈RV ,λj 6=0 G(λ/λj ; d− 1).

Then the function fV (λ) may be written as

(109) fV (λ) = αeig(λ)P (−λ)
P (λ)

,

for some constant α > 0 and where g(λ) is a polynomial of order at most d. Careful
study of the scattering matrix and the upper bound of Theorem 10 may be used to
show that fV (λ) is of order at most d in the half-plane Imλ > c0〈‖V ‖∞〉, see [48].

We consider a fixed compact set K ⊂ Rd with nonempty interior. Let M(K)
be the subset of potentials in L∞0 (K) having a resonance counting function with
maximal order of growth. We can separately consider real- or complex-valued
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potentials. The proof of Theorem 11 requires that we prove 1) that M(K) is a
Gδ-set, and 2) that M(K) is dense in L∞0 (K). The proof that M(K) is a Gδ-set
uses standard estimates on the S-matrix as in [5]. For N,M, j ∈ N with j > 2N+1,
and for q > 0, we define sets of potentials A(N,M, q, j) ⊂ L∞0 (K) by

A(N,M, q, j) ≡ {V ∈ L∞0 (K) | ‖V ‖L∞ ≤ N, log |det(SV (λ))| ≤M |λ|q,
for Imλ ≥ 2N + 1 and |λ| ≤ j}(110)

One proves that these sets are closed. More importantly, we can use these sets
to characterize the set of potentials having a resonance counting function with an
order of growth strictly less that d. For this, we define sets B(N,M, q) by

(111) B(N,M, q) ≡
⋂

j≥2N+1

A(N,M, q, j).

One proves that if NV (r) has order of growth strictly less than d, then one can
find (N,M, `) ∈ N3 so that V ∈ B(N,M, d− 1/`). Since the sets A(N,M, j, q) are
closed, so are the sets B(N,M, j). One notes that ∪(N,M,j)∈N3B(N,M, j) is an Fσ

set. The final step of the proof is to show that M(K) is the complement of this
set. It follows that M(K) is a Gδ-set.

The proof of the density of M(K) is more involved and relies on machinery from
complex analysis as developed in [4]. The basic idea is to consider a wider family of
potentials V (x; z) holomorphic in the complex variable z ∈ Ω ⊂ C, for some open
subset Ω. The construction of the S-matrix goes through for these complex-valued
potentials. The key result is that if for some z0 ∈ Ω the order of growth ρV (z0) for
NV (z0) is equal to d, then there is a pluripolar subset E ⊂ Ω so that the order of
growth for all potentials V (z), with z ∈ Ω\E, is equal to d. A pluripolar set is very
small, in particular, the Lebesgue measure of E ∩ R is zero.

How do we know there is a potential for which NV (r) has maximal order of
growth? For d ≥ 3 odd, we can use the result of Zworski [47]. As mentioned
in section 5.4, Zworski proved the an asymptotic expansion for NV (r) for a class
of radially symmetric potentials with compact support. Let V0 be one of these
potentials so that V0 ∈M(K). To prove the density of M(K) in L∞0 (Rd), we take
any V1 ∈ L∞0 (K) and form V (z) = zV0+(1−z)V1. This is a holomorphic function of
z for z ∈ Ω = C. We apply the result described above to this family of holomorphic
potentials. In particular, for z0 = 1, we have V (z0) = V0 and ρV (z0) = d by
Zworski’s result. Let E ⊂ C be the pluripolar set so that for z ∈ C\E, the order
of growth ρV (z) = d. Since the Lebesgue measure of E ∩ R is zero, we can find
z ∈ R\(E ∩ R), with |z| as small as desired, for which ρV (z) = d. So, given ε > 0,
we take z̃ ∈ R\(E ∩R) so that |z̃| ≤ ε(1 + ‖V1‖L∞ + ‖V0‖L∞)−1. With this choice,
we have

(112) ‖V1 − V (z̃)‖L∞ ≤ |z̃| (‖V1‖L∞‖V0‖L∞) ≤ ε.

This proves the density of M(K) in L∞0 (Rd). Note that we can take V0 real-valued
and so V (z̃) is real-valued.

We remark that the representation (109) is not available in the even dimensional
case.

6.2. Generic behavior: even dimensions. We now summarize the correspond-
ing results in the even dimensional case. Let χV ∈ C∞0 (Rd) be a smooth, compactly-
supported function satisfying χV V = V , and denote the resolvent of HV by
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RV (λ) = (HV − λ2)−1. In the even-dimensional case, the operator-valued function
χV RV (λ)χV has a meromorphic continuation to the infinitely-sheeted Riemann
surface of the logarithm Λ. We denote by Λm the mth open sheet consisting of
z ∈ Λ with mπ < arg z < (m+ 1)π. The physical sheet corresponds to Λ0 and it is
identified with the upper half complex plane. We denote the number of the poles
NV,m(r) of the meromorphic continuation of the truncated resolvent χV RV (λ)χV

on each sheet Λm, counted with multiplicity, and with modulus at most r > 0.
The order of growth of the resonance counting function NV,m(r) for HV on the

mth-sheet is defined by

(113) ρV,m ≡ lim sup
r→∞

logNV,m(r)
log r

.

It is known that ρV,m ≤ d for d ≥ 2 even [41, 42]. As in the odd dimensional case,
it is proved that generically (in the sense of Baire typical) the resonance counting
function has the maximal order of growth d on each non-physical sheet.

Theorem 12. Let d ≥ 2 be even, and let K ⊂ Rd be a fixed, compact set with
nonempty interior. Let MF (K) ⊂ L∞0 (K), for F = R or F = C, be the set
of all real-valued, respectively, complex-valued potentials in L∞0 (K) such that the
resonance counting functions NV,m(r), for m ∈ Z\{0}, have maximal order of
growth. Then, the set MF (K) is a dense Gδ set for F = R or F = C.

This theorem states that for a generic family of real or complex-valued potentials
in L∞0 (K), the order of growth of the resonance counting function is maximal on
each sheet, ρV,m = d, for m ∈ Z\{0}. This implies that there are generically
infinitely many resonances on each nonphysical sheet.

There are two challenges in proving Theorem 12. The first is to construct a
function whose analytic extension to the mth-sheet Λm has zeros at the resonances
of HV . This function will substitute for (106). The second problem is prove a lower
bound (99) for some potential in L∞0 (K) in even dimensions.

To resolve the first problem, we use the following key identity, that follows from
(59) and the formulas for the meromorphic continuation of Hankel functions (see
[6, section 6] or [23, chapter 7]), relating the free resolvent on Λm to that on Λ0,
for any m ∈ Z,

(114) R0(eimπλ) = R0(λ)−m(d)T (λ), where m(d) =
{
m mod 2 d odd
m d even.

The operator T (λ) on L2(Rd) has a Schwartz kernel

(115) T (λ;x, y) = iπ(2π)−dλd−2

∫
Sd−1

eiλ(x−y)·ωdω,

see [19, Section 1.6]. This operator is related to M(λ) introduced in section 4.2 in
(56) (see also (88)). We note that for any χ ∈ C∞0 (Rd), χT (λ)χ is a holomorphic
trace-class operator for λ ∈ C. The operator T (λ) has a kernel proportional to |x−
y|(−d+2)/2J(d−2)/2(λ|x− y|) when d is odd, and to |x− y|(−d+2)/2N(d−2)/2(λ|x− y|)
when d is even. The different behavior of the free resolvent for d odd or even is
encoded in (114).

By the second resolvent formula (63), the poles of RV (λ) with multiplicity, cor-
respond to the zeros of I + V R0(λ)χV . We can reduce the analysis of the zeros
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of the continuation of I + V R0(λ)χV to Λm to the analysis of zeros of a related
operator on Λ0 using (114). If 0 < arg λ < π and m ∈ Z, then eimπλ ∈ Λm, and

I + V R0(eimπλ)χ = I + V (R0(λ)−mT (λ))χV

= (I + V R0(λ)χV )(I −m(I + V R0(λ)χV )−1V T (λ)χV ).

For any fixed V ∈ L∞0 (Rd), there are only finitely many poles of (I+V R0(λ)χV )−1

with 0 < arg λ < π. Thus

(116) fV,m(λ) = det(I −m(I + V R0(λ)χV )−1V T (λ)χV )

is a holomorphic function of λ when 0 < arg λ < π and |λ| > c0〈‖V ‖L∞〉. Moreover,
with at most a finite number of exceptions, the zeros of fV,m(λ), with 0 < arg λ < π
correspond, with multiplicity, to the poles of RV (λ) with mπ < arg λ < (m+ 1)π.
Henceforth, we will consider the function fV,m(λ), for m ∈ Z∗ ≡ Z\{0}, on Λ0.
For d odd, we are only interested in m = −1. In this case, the zeros of fV,−1(λ),
for λ ∈ Λ0, correspond to the resonances. This provides an alternative to the S-
matrix formalism, as presented in section 6.1, for estimating the resonance counting
function in the odd dimensional case.

The second problem in even dimensions is to prove that there are some potentials
in L∞0 (K) for which the resonance counting function has the correct lower bound on
each sheet. This is done by an explicit calculation. We prove (99) in even dimensions
d ≥ 2 for Schrödinger operators HV with radial potentials V (x) = V0χBR(0)(x),
with V0 > 0, using separation of variables and uniform asymptotics of Bessel and
Hankel functions due to Olver [23, 24, 25]. This method can also be used in odd
dimensions as an alternative to [47] thus providing examples as required in section
6.1.

7. Topics not covered and some literature

This notes focussed on perturbations of the Laplacian on Rd by real-valued,
smooth, compactly supported potentials. This is just one family of examples where
resonances arise. Other topics concerning resonances include:

(1) Complex-spectral deformation method and resonances
(2) Obstacle scattering
(3) Resonance free regions
(4) Resonances for the wave equation
(5) Resonances for elastic media
(6) Resonances for manifolds hyperbolic at infinity
(7) Semiclassical theory of resonances
(8) Description of resonance wave functions
(9) Approximate exponential decay of resonance states

(10) Local energy decay estimates
There are some reviews on resonances that cover many aspects of the theory in

this list. These reviews include:
(1) The long discussion by M. Zworski [49] that covers the complex scal-

ing method developed by Sjöstrand and Zworski (inspired by the Baslev-
Combes method) and its applications.

(2) G. Vodev has written an expository article in Cubo [44]. Many aspects of
resonances for elastic bodies and obstacle scattering are described there.
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(3) The proof of the generic properties of the resonance counting function is
described in Christiansen and Hislop [8], a summary written for les Journées
EDP 2008 Evian available on the arXiv and from Cedram.

(4) Text book versions of spectral deformation and quantum resonances, with
an emphasis on the semiclassical regime, can be found in [9] and [14].

Finally, for a lighter and intuitive discussion of resonances, the reader is referred
to Zworski’s article Resonances in physics and geometry that appeared in the No-
tices of the American Mathematical Society [50].
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course. I would like to thank Gerardo Mendoza and Peter A. Perry for some useful
discussions. I was partially supported by NSF grant DMS 0803379 during the time
this work was done.

8. Appendix: Assorted results

Two groups of results that are related to material in the text are summarized
here. The first is a synopsis of the spectral theory of linear self-adjoint operators.
The second is an analysis of the time evolution of states lying in various spectral
subspaces of a self-adjoint operator. Detailed discussions of these topics may be
found in the Reed-Simon series [29]-[32], for example, and many other texts.

8.1. Spectral theory. Let A be a self-adjoint operator on a separable Hilbert
space H. Then, there is a direct sum decomposition H = Hac(A)⊕Hsc(A)⊕Hpp(A)
into three orthogonal subspaces that are A-invariant in that A : D(A) ∩HX(A) →
HX(A) for X = ac, sc,pp. The pure point subspaceHpp(A) is the closure of the span
of all the eigenfunctions of A. The continuous subspaceHcon(A) ≡ Hac(A)⊕Hsc(A)
is the orthogonal complement of Hpp(A). For most Schrödinger operators, one
has Hsc(HV ) = ∅. The proof of the absence of singular continuous spectrum is
one of the main applications of the Mourre estimate, see the discussion in section
4.1, [9, chapter 4], and the original paper [22]. As the names suggest, there is a
measure associated with a self-adjoint operator and this measure has a Lebesgue
decomposition into pure point and continuous measures. The continuous measure
admits a decomposition relative to Lebesgue measure into a singular continuous
and absolutely continuous parts.

8.2. The RAGE Theorem. The RAGE Theorem (Ruelle, Amrein, Georgescu,
Enss) (see, for example, [9, section 5.4]) is a general result about the averaged time
evolution of states in the continuous subspace Hcont(A) of a self-adjoint operator
A.

Theorem 13. Let A be a self-adjoint operator and φ ∈ Hcont(A), where Hcont(A)
is the continuous spectral subspace of A. Suppose that C is a bounded operator and
that C(A+ i)−1 is compact. Then, we have

(117) lim
T→∞

1
T

∫ T

0

‖Ce−itAφ‖ dt = 0.
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Furthermore, if φ ∈ H satisfies (117), then φ ∈ Hcont(A).

Let A = HV be a Schrödinger operator of the type considered here, and C =
χBR(0), the characteristic function on a ball of radius R > 0 centered at the origin.
The RAGE Theorem (117) states that a state, initially localized near the origin, and
in the continuous spectral subspace ofHV , will eventually leave this neighborhood of
the origin in this time-averaged sense. The continuous spectral subspace cont(HV )
has a further decomposition into the singular and absolutely continuous subspaces.
It is the possible recurrent behavior of states in the singular continuous subspace
that requires the time averaging in (117).

Corollary 1. Let HV be a self-adjoint operator on L2(Rd). Let φ ∈ Hac(HV ),
where Hac(HV ) is the absolutely continuous spectral subspace of HV . Let χK be the
characteristic function for a compact subset K ⊂ Rd. Then, we have

(118) lim
t→∞

‖χKUV (t)φ‖ = 0.

As one might expect, if φ ∈ Hpp(HV ), then χKUV (t)φ should remain localized
form all time. If φ is an eigenfunction of HV , then simply being in L2(Rd) means
that for any ε > 0 there is a compact subset Kε ⊂ Rd so that ‖χRd\Kε

UV (t)φ‖ < ε,
for all t. The general case follows from Wiener’s Theorem.
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1, Enero 2001, 319–360.
[45] D. Yafaev, Mathematical scattering theory, Providence, RI: AMS, 2000.



32 P. D. HISLOP

[46] M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73

(1987), 277–296.

[47] M. Zworski, Sharp polynomial bounds on the number of scattering poles of radial po-
tentials, J. Funct. Anal. 82 (1989), 370–403.

[48] M. Zworski, Poisson formulae for resonances, Séminaire sur les Equations aux Dérivées
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