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1 I n t r o d u c t i o n  

Over twenty years ago, Marc Kac posed what is arguably one of the simplest 
inverse problems in pure mathematics: "Can one hear the shape of a drum?" 
[19]. Mathematically, the question is formulated as follows. Let /2 be a simply 
connected, plane domain (the drumhead) bounded by a smooth curve 7, and 
consider the wave equation on /2 with Dirichlet boundary condition on 7 (the 
drumhead is clamped at the boundary): 

Au(z,t) = ~utt(x, t)  in/2,  

u(z, t) = 0 on 7. 

The function u(z,t) is the displacement of the drumhead, as it vibrates, at 
position z and time t. Looking for solutions of the form u(z, t) = Re ei~tv(z) 
(normal modes) leads to an eigenvalue problem for the Dirichlet Laplacian on 
B: 

v(x) = 0 on 7 (1) 

where A = ~2/c2. We write the infinite sequence of Dirichlet eigenvalues for this 
c¢ A co problem as {A,(/2)}n=l, or simply { -},~=1 it" the choice of domain/2  is clear in 

context. Kac's question means the following: is it possible to distinguish "drums" 
/21 and/22 with distinct (modulo isometrics) bounding curves 71 and 72, simply 
by "hearing" all of the eigenvalues of the Dirichlet Laplacian? 

Another way of asking the question is this. What  is the geometric content 
of the eigenvalues of the Laplacian? Is there sufficient geometric information 
to determine the bounding curve 7 uniquely? In what follows we will call two 
domains isospectral if all of their Dirichlet eigenvalues are the same. We refer 
to the set of all domains (modulo rigid motions in the plane) with the same 
Dirichlet eigenvalues as a given domain/2  as the isospectral set of/2.  We would 
like to characterize the isospectral set of a given domain. 
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Some surprising and interesting results are obtained by considering the heat 
equation on a9 with Dirichlet boundary conditions, which gives rise to the same 
boundary value problem as before. The heat equation is 

au(~,t)  = u,(~,t) in 
u(x,t) = 0 o n  7 

u(z, 0) = f(~) 

where u(x,t) is the temperature at point x and time t, and f(x) is the initial 
temperature distribution. This evolution equation has the formal solution 

u(x,t)  = (~ ,af ) (x)  

where the operator e ta  can be calculated using the spectral resolution of A. 
Indeed, if Cj (z) is the normalized eigenfunction of the boundary value problem 
(1) with eigenvalue Aj, the operator e ta  has integral kernel K ( t ,  x, y) (the "heat 
kernel") given by 

oo 

K(t, ~, v) = ~ ~-'~¢~(~)¢j(v). (2) 
j = l  

The trace of K ( t ,  x, y) is actually a spectral invariant: by (2), we can compute 

oo 

f K(~,~,~le~= ~- '~.  (3) 
j=l  

Note that the function (3) determines the spectrum {A,~},~°°_ 1. 
To analyze the geometric content of the spectrum, one calculates the same 

trace by a completely different method: one constructs the heat kernel by per- 
turbation from the explicit heat kernel for the plane, and then one computes the 
trace explicitly. It turns out that the trace has a small-t asymptotic expansion 

/o 1( ) K(z,x, t )  d z , , ~  ao+al/2t 1/2 +al t  + . . .  , 

where 

a0 _w- area(~Q) 

al = length(7 ) 

Although a strict derivation is a bit involved (see Chavel [12] and references 
therein), there is a simple heuristic argument, due to Mark Kac [19], which 
shows why a0 and al should give the area of f2 and the length of 7. The heat 
kernel in the plane is 

1 (, ) 
K 0 ( x , y , t ) = ~ e x p  x - y l  /47rt . 
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We expect that,  for small times, K(x,x,t) ~_ Ko(x,x,t) (a Brownian particle 
starting out in the interior doesn't "see" the boundary for a time of order V~) 
so that,  to lowest order, 

L L 1 K(x,  x, t )  dx ~ Ko(x, a , t )  dx = ~-~area(Y2). 

For times of order v~, boundary effects become important.  We can approximate 
the heat kernel near the boundary locally by the "method of images." Locally, 
the boundary looks like the line zl  = 0 in the xl-x2 plane; letting x ~-* z* be 
the reflection (zl,  x2) ~-~ ( -Xl ,  z2), the kernel 

K . ( x ,  v, t)  = Ko(x, v, t)  - Ko(~, v*,t) 

vanishes on xl = O. Hence, 

K~(x, x, t) _ .  
1 - i -2~ / t  

4 7rt 
where 5 is the distance from x to the boundary. Writing the volume integral 
for the additional term as an integral over the boundary curve and the distance 
from the boundary, 

f~ fo °° l-~e-2~2/t 

we have 

/ K ( x , x , t ) d x _  area(12) length(7) 1 ( ~ t t )  
4~t 4 ~ + o . 

It follows that  the isospectral set of a given "drum" ~2 contains only drums 
with the same area and perimeter. 

2 C a n  o n e  h e a r  t h e  s h a p e  o f  a m a n i f o l d ?  

Kac's early observations stimulated a flurry of work in which mathematicians 
generalized Kac's problem, studied the geometric content of the spectrum, and 
constructed counterexamples to Kac's conjecture as generalized to Riemannian 
manifolds. Guides to the extensive literature in spectral geometry include the 
books of of S6rard [2], Berger, Gauduchon, and Mazet [3], and Chavel [12]. 

Here we will briefly discuss the generalization of Kac's problem and some 
of the known -results. A Riemannian manifold of dimension n is a smooth n- 
dimensional manifold M equipped with a Riemannian metric g which defines 
the length of tangent vectors and determines distances and angles on the man- 
ifold. The metric also determines the Riemann curvature tensor of M. In two 
dimensions, the Riemann curvature tensor is in turn determined by the scalar 
curvature, and in three dimensions it is completely determined by the Ricci cur- 
vature tensor. If M is compact, the associated Laplacian has an infinite set of 
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discrete eigenvalues {An }n = 1°°' What  is the geometric content of the spectrum 
for a compact Riemannian manifold? 

An early paper of Milnor [20] constructs a pair of 16-dimensional torii with 
the same spectrum. The torii T~ and T~ are quotients of t t  n by lattices F1 
and F2 of translations of R" .  Since the two torii are isometric if and only if 
their lattices are congruent, it suffices to construct a pair of non-congruent 16- 
dimensional lattices whose associated torii have the same spectrum. 

To understand the analysis involved in Milnor's construction, consider the 
following simple 'trace formula' for a torus T n = R'*/F which computes the 
trace of the heat kernel on a torus in terms of the lengths of the lattice vectors 
of F.  Using the "method of images," it is easy to see that  the heat kernel on the 
torus is given by the formula 

Kr(x ,y , t )  = K0(x + 
wEF 

where ] 
Ko(x, y,t) - (4~.~),~/~ e - 1 ~ - ~ 1 2 / 4 t _  

is the heat kernel on R '~. It follows that  

~ K(x , x , t )dx -  v°l(Tn) . 4~t E e-lwl2/4t" 
•EF 

Milnor noted that  there exist non-congruent lattices in 16 dimensions with the 
same set of "lengths" { ]w[ : 0J E F}, first discovered by Wit t  [26]. Since the trace 
of the heat kernel determines the spectrum, and the heat trace is in turn deter- 
mined by the lengths, it follows that  the corresponding non-isometric torii have 
the same spectrum. 

Later, other mathematicians found lower-dimensional examples of pairs of 
non-isometric lZiemannian manifolds with the same spectrum. The construction 
of these examples involved Riemann surfaces with constant curvature and genus 
g > 5, and Riemann surfaces with variable curvature and genus g > 3. Among 
mathematicians contributing to this research were Vigneraas [25], Buser [4], 
Sunada [24], and Brooks-Tse [9]. Sunada [24] proved a simple trace formula that  
reduces the construction of such examples to an exercise in group theory and 
used it to construct isospectral surfaces. A very readable exposition of this work 
may be found in the paper of Brooks [6]. 

All of these examples showed t h a t  it was possible to construct pairs (or 
more generally, finite families) of Riemannian manifolds with the same spectrum. 
Later, Gordon and Wilson [18] and De]Mrck and Gordon [14, 15, 16] constructed 
continuous families ofisospectral manifolds in sufficiently high dimension (n > 
5). Two major questions remained: 

1) Can one show that  the isospectral set of a given manifold is at most finite 
in "low" dimension? 

2) Can one find counterexamples for Kac's original problem, i.e., can one con- 
struct isospectral, non-congruent planar domains? 
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As we will see, some partial progress has been made on the first question and 
decisive progress has been made on the second. 

3 S o m e  P o s i t i v e  R e s u l t s  

In 1986, Osgood, Phillips, and Sarnak proved one of the first major positive re- 
sults on isospectral sets of surfaces and planar domains. Informally, a sequence of 
planar domains 12j converges in C °O sense to a limiting, non-degenerate domain 
12 if the bounding curves 7j converge in Coo sense modulo rigid motions of the 
plane and the limit curve encloses a nondegenerate bounded region. Similarly, a 
set of compact surfaces Sj converges in C °O sense to a limiting, non-degenerate 
surface S if the surfaces are all diffeomorphic to S and the metrics gj on Sj, 
pulled back to S, converge in Coo sense to a positive definite metric on S. Os- 
good, Phillips, and Sarnak showed [22]: 

T h e o r e m  1. (i) Let 12j be a sequence of isospectral planar domains. There is a 
subsequence which converges in Coo sense to a nondegenerate limiting sur- 
face. 

(it) Let Sj be a sequence of isospectral compact surfaces. There is a subsequenee 
of the Sj converging in C °O sense to a non-degenerate surface S. 

Later, Osgood, Phillips, and Sarnak [23] generalized the first part of their 
result to non-simply connected planar domains. 

If one can show that  the isospectral set of a given domain or surface is 
discrete, the compactness result implies that  the isospectral set of the given 
domain or surface is tinite. Although no such discreteness results have yet been 
proved, there has been some progress studying the isospectral sets of Riemannian 
manifolds in higher dimensions. Brooks, Perry, and Yang [7] and Chang and Yang 
[10, 11] studied isospectral sets of conformally equivalen* metrics on a fixed 
compact manifold in three dimensions: that is, metrics on a fixed underlying 
smooth manifold which define the same angles, but not necessarily the same 
distances. Later, Anderson [1] and Brooks, Perry, and Petersen [8] studied sets of 
manifolds with the same spectrum and were able to prove compactness subject 
to certain a priori assumptions on the geometry. Brooks, Perry, and  Petersen 
proved: 

T h e o r e m 2 .  Suppose { M  i )  is a sequence of isospectral manifolds such that ei- 
ther 

(i) All of the Mj have negative sectional curvatures, or 
(it) All of the Mj have Ricci curvature bounded below 

Then there are finitely many diffeomorphism types, and there is a subsequence 
which converges in C °° to a nondegenerate limiting manifold. 

It is expected that  the curvature constraints can be removed eventually. 
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An important role is played in both of these theorems by two kinds of spectral 
invariants: local invariants expressible as integrals of the curvature tensor and 
its derivatives over the domain or manifold and non-local invariants such as the 
determinant of the Laplacian and the eigenvalues themselves. 

Let us consider the case of a compact manifold M without boundary in 2 or 
3 dimensions. Typically, the local invariants are the hea~ invarian~s arising in the 
small-~ asymptotic expansion of the heat trace. If KM(~:, ~, ~) is the fundamental 
solution kernel for the heat equation on a Pdemannian manifold M, one has the 
asymptotic expansion 

K(x, t) e vol(x) ~ E aj i 
j=0 

with the aj spectral invariants. The term ao gives the volume of the Pdemannian 
manifold, and the higher-order terms are integrals over M of the scalar (n = 2) 
or Ricci (n = 3) curvatures and their covariant derivatives up to order j - 2. 

The heat invariants by themselves do not contain sufficient information to 
prove compactness. An easy way to see this is to note that there are deformations 
of constant curvature surfaces of genus 2 or higher in which the length of a closed 
geodesic tends to zero, thereby dividing the manifold into two parts in the limit 
as £ --* 0 (see figure 1). Since the heat invariants in this case depend on the scalar 
curvature and its derivatives, a0 is constant and the remaining invariants are all 
zero! Geometrically, the quantity which becomes uncontrolled in the limit £ --. 0 
is the diameter of the manifold, defined as the maximum of distM(~:, y) where 
distM(., .) is the distance with respect to the Riemannian metric on M. 

\ 
<Z> 0 

Fig. 1. 

What are the nonlocal invariants which prevent degeneration of isospectral 
manifolds? Osgood, Phillips and Sarnak studied the determinant of the Lapla- 
cian, a renormalized product of the nonzero eigenvalues of the Laplacian which 
is manifestly a spectral invariant. Using results of Wolpert [27], they showed 
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that., for degenerations of the type described above, det(- ,~)  -* 0 as l - -  0, so 
that fixity of the determinant of the Laplacian rules out such degenerations for 
isospectral surfaces. 

In three dimensions, nonlocal invariants are again used to control the di- 
ameter of isospectral manifolds. Cheng's comparison theorem [I3] implies that, 
given a bound on Ricci curvature, one can show that the spectrum bounds the 
diameter from above (see [8]). Intuitively, if the diameter of the manifold is too 
large, one can construct test. functions in a large number of geodesic balls and 
obtain a contradiction use the max-rain principle. More generally, one expects 
blow-up of the diameter or other singularity formation to lead to concentration 
of eigenvalues forbidden by isospectrality. 

4 C o u n t e r e x a m p l e s  R e v i s i t e d  

Perhaps the most remarkable recent development relating to Kac's problem 
is the construction, by Gordon, Webb, and Wolpert [17], of isospectral, non- 
isometric planar domains (figure 2). These domains are obtained from isospectral 
manifolds-with-boundary constructed using the Sunada technique [24]. One can 
actually prove isospectrality by the so-called method of transplantation: one can 
take an eigenfunction of the first domain ~21, restrict it to each of the triangles 
A-G, and rearrange the pieces in the second domain as shown. Since the new 
functions satisfy the Dirichht boundary conditions and are continuous along 
each triangle boundary, they are eigenfunctions of the Laplacian on D2. This 
shows that the Dirichtet spectrum of/21 is contained in the Dirichlet spectrum 
of ~2~. A similar transplantation argument shows the reverse inclusion. 

A 

Domain 1 

/ B+F-G 

G+C+A - 

Domain 2 

Fig. 2. 
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More recently, Buser, Conway, Doyle, and Semmler [5] have shown that  one 
can construct pairs of drums which "sound alike" in the stronger sense that  there 
are points xl E £21 and x2 E £22 with the property that  if £21 is hit at xl ,  it 
makes exactly the same sound as £22 does when hit at z2. Tha t  is, the solutions 
to the wave equations in £21 

- = 0 

u (x, 0 )  = 0 

0 )  = - 

with Dirichlet boundary conditions satisfy u1(~1, t) = u2(x~, t) for all t > 0. 
Thus, one may say, with apologies to Henry David Thoreau,  that  it is possible 

to march to the sound of a different drummer,  and hear the same beat! 
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