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INTRODUCTION 

Let W be a compact oriented Riemannian manifold of dimension N, 
and let K be a simplicial complex which is a smooth triangulation of W. 
The Reidemeister-Franz torsion (or R-torsion) 7 of K is a function 
of certain representations of the fundamental group of K. Since it is a 
combinatorial invariant, and since smooth triangulations of W are 
equivalent, this torsion is a manifold invariant. 

We raise the question as to how to describe this manifold invariant 
in analytic terms. Arnold Shapiro once suggested that there might be 
a formula for the torsion in terms of the Laplacian d acting on differential 
forms on W. Our candidate T involves the zeta function for appropriate 
Laplacians. Though we have been unable to prove that T = T, we 
show in this paper that T is a manifold invariant and present some 
evidence that T = 7. 

If one thinks of analytic torsion as an invariant associated to the De 
Rham complex, it is natural to ask whether there are analogous invariants 
for other elliptic complexes. For complex manifolds and the &complex, 
there is indeed such a holomorphic invariant, which will be the subject 
of a subsequent paper. 

In Section 1 we give a short exposition of Reidemeister-Franz torsion 
and motivate our definition of the analytic torsion T. In Section 2 are 
collected the main results of the paper. First we prove that T = T, 
is independent of the metric of W, for W closed. Next we prove three 
results which are formal analogs of known properties of the Reidemeister- 
Franz torsion, namely, T, = 1 if W is closed and has even dimension; 
Twlxlv, = ( Twl)X(Wz), x( W,) being the Euler characteristic of W, , if 
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146 RAY AND SINGER 

W, is simply connected; and, finally, if W, and W, have the same 
universal covering manifold and if the fundamental group .ir,( B’r) of 
IV, is a subgroup of that of W, , then TV1 = TbY, 0 U, where U carries 
a representation of ~r( IV,) into the induced representation of z-i( IV,). 

We also describe in Section 2 a possible method of proof that T,/T, 
is constant on the representations of rr( IV) for which the torsion is 
defined. Part of this program involves extending the definition of 
torsion to the case of Riemannian manifolds with boundary and with 
nontrivial homology. This is done in Section 3. To define T in this 
case we must choose a base for the homology classes of W, which we 
get by the Hodge theorem from an orthonormal base of harmonic forms. 

In Section 4 we present the de Rham-Hodge theory for manifolds 
with boundary, and prove that the combinatorial torsion defined in 
Section 3 is invariant under subdivision, hence independent of the 
triangulation of W used to define it. At the heart of the proof is a 
relation, proved by Kodaira [4] f or closed manifolds, between duality 
in the differential form setting and in the homology-cohomology setting. 

In Section 5, some results about the heat equation are described, 
including the Hodge theorem for manifolds with boundary. In Section 6 
we compute the behavior of the trace of the heat kernel as the metric 
changes. 

Finally, in Section 7 we apply the results of the four preceding 
sections to prove the following. Suppose a manifold W with boundary 
is equipped with two metrics which determine the same normal direction 
at the boundary. Suppose 0, and 0, are two representations of the 
fundamental group nr(W), for which the torsion is defined. Then the 
differences log( T,(O,)/T,,,(O,)) - log( T,(0,)/~w~(02)) are the same for 
both metrics. 

1. THE ANALYTIC TORSION 

Let us begin with a description of ReidemeisterFranz torsion. 
We will follow Milnor [lo, Section 81 and in particular use his definition 
of R-torsion, which differs from that of Reidemeister and Franz. 

If V is a finite-dimensional vector space over the reals and if 
v = (VI )...) v,J and w = (wr ,..., wn) are two bases for V, let [w/v] 
denote 1 determinant T /, where T is the matrix representing the change 
of base from v to w : wi = C tiivj . 
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suppose 

is a chain complex of finite real modules. As usual, let 2, denote the 
kernel of 2 in C, , B,t C Z, the image of C, ~I under 2, and H,(C) = ZJB, 
the q-th homology group of C. 

Suppose we are given preferred bases c, for C,[ and h, for I-I,(C) 
for each q. Choose a base b,, for B, for each q; let 6,-i be an independent 
set in C, such that BbqP, = b,_, , and $, an independent set in Zq 
representing the base h, . Then (b, , gg , b,-,) is a base for C, . Since, 
clearly, [b, La, baP1/c,J depends only on b,[ , h, , b,-, , we denote it 
by Lb, > h, , b&,1. 

DEFINITION I. 1. T(C) is the positive real number defined by 

log T(C) = f (-I)” log[b, , h, , b,_r,‘c,]. 
cl=,, 

Remark. It is easy to see that T(C) does not depend on the choice 
of the bases b, for the B, : if b,’ is another choice, then 

[bg’r h, , b;-,:c,l =- [b,‘;‘b,l[b~~,!‘b,~,][b, , h, , b,&,l, 

and the first two factors on the right drop out in the formula for T(C). 
The R-torsion arises in the following context. Let K be a finite-cell 

complex and R the simply connected covering space of K with the 
fundamental group n1 of K acting as deck transformations on R. Think 
of K embedded as a fundamental domain in l?, so that R is just the 
set of translates of K under ri . In this way, the real chain groups 
C,(R) become modules over the real group algebra R(-rr,), with a 
preferred base consisting of the cells of K. 

Let e be a cell of K; its boundary %e in Z? will not in general be 
contained in K, but will be a combination of translates of cells of K 
by deck transformations. Hence relative to the preferred base, the 
boundary operator on the R(T,)- module C,(a) is a matrix with coeffi- 
cients in R(n,). 

Now let 0 be a representation of ni(K) by orthogonal n x n matrices. 
We may think of 0 as making R” a right R(n,)-module. Define the 
chain complex C(K, 0) by 

C&C, 0) = R’I @ C,(l?). f1.4 
R(rl) 

607/7/2-s 
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C&K, 0) is a real vector space, and we can choose a preferred base 
(xi @ e,), where xi runs through an orthogonal base of Rn and e, through 
the preferred base of C,(z) consisting of the cells of K. . 

DEFINITION 1.3. Let 0 be a representation of the fundamental 
group ni by orthogonal matrices for which C(K, 0) is acyclic. The 
R-torsion is defined for such a representation by 

where C(K, 0) has the preferred base described above. (Since 
H(C(K, 0)) is assumed to be zero, no homology base occurs in the 
definition of T(C(K, O)).) 

Remark. The preferred base of C(K, 0) depends on an arbitrary 
embedding of K in the covering space R. A different choice of the 
embedding, however, produces a new base related to the old one by 
an elementary matrix whose entries are group elements. Since this 
corresponds to a change of base in C(K, 0) by an orthogonal matrix, 
the R-torsion rK is independent of this arbitrary choice. Similarly, 
rK does not depend on the arbitrary choice of the orthonormal base x 
of R”. 

It is known [15; 10, Section 71 that TV is a combinatorial invariant 
of K. Hence if W is a compact oriented manifold, any smooth triangula- 
tion of k+’ gives the same R-torsion, which we denote by rw . 

We will now define the analytic torsion. For the present, W will be 
a compact oriented manifold without boundary, of dimension N. 
Given a representation 0 of the fundamental group 7~i( IV) by orthogonal 
matrices, let E(0) be the associated vector bundle, and let 9 = C 9 
be the linear space of Cm differential forms on W with values in E(0). 
9” is the space of C” sections of the sheaf fl* @ E(O), where /lo is the 
de Rham sheaf. We have the usual exterior differential d : 9 ---f W+l, 
with d2 = 0. 

Suppose that W has a Riemannian metric. This defines a duality 
* : 9 ---f QN-q and provides %g with an inner product 

where A : {flQ 0 E(O), flp 0 E(O)} + /IQ+~ is the map determined by 
the usual exterior product of differential forms and the inner product 
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in E(0). With this inner product, 2 becomes a Hilbert space, and 
6 = (-l)NQ+N+l*d* is the formal adjoint of d on 22~. 

The Laplacian 

A = -(Sd $ dS) ( 1.4) 

is symmetric and negative-definite on 2, and is known [7] to have a 
pure point spectrum. We write A, for the restriction of A to Pq. 

Suppose now that zero is not an eigenvalue of A, corresponding by 
the Hodge theorem to the assumption in Definition 1.3 that C(K, 0) 
is acyclic. Then the zeta function [,,, of A, on P is defined by 

1 . -0 

i w 0 
t’-’ ‘lYr(e’d~) dt (1.5) 

for Re(s) large, the sum running over the eigenvalues h, of A,. It is 
known [16] that <,,, extends to a meromorphic function of s which 
is analytic at s = 0. 

DEFINITION 1.6. Let 0 be a representation of Z-~(W) by orthogonal 
matrices such that A is strictly negative on Q( IV, 0). The analytic 
torsion T,(O) is defined for such a representation as the positive real 
root of 

log TN,(O) = ; 2 (-1)” q&,(O). 
y=o 

This is our candidate for the analytic torsion, and we shall now 
explain where the formula comes from. 

First we note that the R-torsion of a smooth triangulation K of W 
can be expressed in terms of determinants formed from the boundary 
operator a on C(K, 0), as follows. The choice of a preferred base for each 
C, represents 8 : C, + C,-, as a real matrix. Let a* : C, + Cqll be the 
transpose matrix, and define the combinatorial Laplacian A((‘) : C, + C, 
bY 

Let A:’ be the matrix representing A@) on each C, . Under the assump- 
tion that C(K, 0) is acyclic, A,f’ is nonsingular for each q. 
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PROPOSITION I .7. If the R-torsion ~~(0) is dejined for the representa- 
tion 0, then 

log ~~(0) = $ i (-l)y+’ q log det(-A$)). 
*=o 

Proof. On each chain group C&K, 0), the preferred base determines 
an inner product in which the combinatorial Laplacian is a symmetric 
and strictly negative matrix. Moreover, (since a2 = 0), the subspace 
B, = a(C,+,) of b oundaries is invariant under 0:‘. Let b, = (bql,..., b2) 
be an orthonormal base for B, consisting of eigenvectors of Ah”‘: 

d(c)b f = 4 n -aa*b .i = x 0 .b j CT.1 4 . 

Having chosen this base for each I?,, set 

so that L?@ e-1 = b;-, . Note that the vectors 6j,-, are orthogonal, with 

/I hip1 II2 = + 
1 

rl-l,j 

(a*b;_, , c?*b;p,) = - /\ . 
S-l,? 

Hence, assuming C(K, 0) acyclic, 

log ~~(0) = 5 (-l)n log[b, ,6,Jc,] 
/PO 

= il (-I)” log rE (--/\q-I,j))““. 
1 

But the orthonormal base of C, consisting of b,j, j = I,..,, rrl , and 
(-Xp_l,j)1~z6~_l , j = l,..., yq-r , clearly diagonalizes A:), so that 

det( -0;‘) = fi (--h,,J ‘E (-A,&. 
1 1 

This implies 

?a-1 

log n (-Au& = f (-l)“-” log det(-A;)), 
1 k=fl 
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which transforms the above expression for log ~~(0) into that given 
in Proposition 1.7. 

Next, observe that the determinant of the nonsingular matrix -A:’ 
can be expressed in terms of its zeta function 

= Tr( -,+))-- s. 

Indeed, since for each eigenvalue h of A(:“, 

g (-A)-” = -log( -A)( -A)+, 

we have log det(-A:‘) = -c:“(O). Thus the formula for the analytic 
torsion is a formal analog of that for the R-torsion. In view of the 
relation between the complexes 9( JV, 0) and C(K, 0) given by the 
de Rham theorem, we are led to believe that the analytic torsion and 
the R-torsion may in fact be equal. 

2. SOME PROPERTIES OF THE ANALYTIC TORSION 

In this section we prov:e four properties of the analytic torsion. 
Three of these are formal analogs of known properties of the R-torsion, 
and the proofs depend primarily on formal manipulations. The proof 
of Theorem 2.1, on the other hand, requires some properties of the 
heat kernel, given in Sections 5 and 6. 

We also outline an argument which might prove that for two repre- 
sentations 0, and 0, of Z-~(W), T,(O,)/T,(O,) = T,(0,)/~,(0,). The 
remainder of the paper carries out part of this program. 

Our first task in this section is to prove that the analytic torsion T, 
does not depend on the arbitrary choice of a Riemannian metric for JV. 

THEOREM 2.1. Let W be a compact oriented manifold without boundary, 
and let 0 be a representation of the fundamental group n,(W) by orthogonal 
matrices with the property that the cohomology with coejicients in the 
associated vector bundle E(0) is trivial. Then T,(O) has the same value 
fop any choice of a Riemannian metric on W. 
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Proof. We will prove in Theorem 2.3 that log T, = 0 when W 
has even dimension. Since that proof does not make use of Theorem 2.1, 
we may assume here that N = dim W is odd. 

Suppose pa and pi are two Riemannian metrics on W. Set ptL = 
(1 - U)Po +- Vl> and let O,(U) denote the Laplacian on .@( W, 0) 
formed with the metric pu . By the Hodge theorem, d,(u) is strictly 
negative under the assumption that the cohomology of W with coefficients 
in E(0) is trivial. Hence 

f(u, s) = 4 !” (-1)” q j, t”-’ Tr(et”t~(u)) dt 

defines a function of s for Re s sufficiently large, which as remarked 
after (1.5) extends to a meromorphic function in the s-plane. According 
to (1.5) and Definition 1.6, log T,(O) = f (u, 0) for the metric pu 
on W, so we have to show that (a/au)f(u, 0) = 0. 

By Proposition 6.1, 

where d, = c&d - Sad + da6 - d&x, a: being the algebraic operator 
01 = *-G = *-l(a/Ju *) on 9g. Clearly, 

Tr(et+)) < Ce?, t 3 t, > 0, 

for C, E > 0 independent of u in [0, 11, so that we can differentiate 
under the integral to get 

for Re s large. 
We now compute Tr(e 1°JU)d,). If A is of trace class and B is a bounded 

operator, it is well known that Tr(AB) = Tr(BA). Hence 

Tr(et”G.3d) = Tr(e~fAG3de*td~) 

= Tr(Sdef%), 

Tr(e%hd) = Tr(detd6a), 

Tr(e%d) = Tr(Set%h). 
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Since dA, = A,+,d and SA,, = A,_,8, we have 

Tr(e%,) = Tr(e%%h) - Tr(e”,~+l&x) 

+ Tr(e’“V-%&) - Tr(e%&). 

Thus 

(g” (-l)Q 4 Tr(et”v4 = i, (-l)“+l(Tr(e’“&&) + Tr(etdRdSa)) 

= ,E, (- 1)” Tr(efAc~d,,a) 

= $ ‘f (-I)0 Tr(e’%). 
,,=” 

Using this in (2.2), 

The last equality is obtained by integration by parts. The integrated 
terms vanish for Re s large because Tr(e ‘d,j(u)~) decreases exponentially 
for large t and is O(t--N/2) for small t. 

To complete the proof of Theorem 2.1 we need only show that 
the meromorphic extension of the function 

has no pole at the origin. 
This, however, follows for W of odd dimension by a straightforward 

extension of the results of Minakshisundaram and Pleijel [I l] (see (5.6); 
Seeley [I61 has p roved a much broader generalization), namely, for 
Re s large, (-A,)-” is an integral operator with kernel 

KS(x) y) E hom(%*(y), g!“(x)); 

for each x in IV, the map s 3 K,Jx, X) extends to a meromorphic 
function in the s-plane, which vanishes at s = 0 when dim W is odd. 
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Now (-A,)-% has the kernel &(x, y) CX( y) for Re s large, and the 
extension of Ks(x, x) n(x) also vanishes at s = 0. Hence 

‘Tr((--d,)-s a) = I,, Tr(Ks(x, X) U(X)) 

has a meromorphic extension vanishing at s = 0. 
But standard calculations give 

t”-l Tr(efd,Ih) a) dt 

= I’(s) Tr(( --d,(u)))s 01), 

and so g(u, s) is regular at s = 0. 
We next prove three properties of the analytic torsion which reflect 

known properties of the R-torsion. 

THEOREM 2.3. Suppose W is an oriented compact manifold without 
boundary, of even dimension, Then log T,(O) = 0. (That log Q-~ = 0 
in this case is proved in [8].) 

Proof. Let 0 be a representation of r,(W) by orthogonal matrices 
for which the Laplacian A is strictly negative on 9(W, 0). We will 
show, using duality, that 

,Z” (- 1 Y’ 45fLow F 0, 

where 5,,, is the zeta function defined in (1.5). 
Let h be an eigenvalue of A,, and let 6;(h) be the subspace of 9( W, 0) 

consisting of the eigenforms belonging to A. We have assumed that 
zero is not an eigenvalue, so we may define the two maps 

A,‘(h) = --x-l d8, 

A;(X) = --x-l ad, 

on &*(A). Since (dS)2 = -dSd, (6d)2 = --6dA, A,’ and A,” are orthogonal 
projections of G,(h) onto the two subspaces, respectively, 

4’69 = {C E 4b(4, & = 01, 

&;(A) = {$ t <(A), 84 = O}. 
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Moreover, the equation 
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shows that 6&h) is the direct sum of the subspaces gq,‘(h), A;(h). Finally, 
the map (-A))‘:“d is an isometry of B,“(h) onto &i,.,(h), with inverse 
(-y/Q. 

Let N,‘(X) and N,“(h) be the dimensions of the spaces $‘(A) and d;(X). 
Because of the above, the multiplicity of X is N,(X) = N,‘(X) + N:(A) = 
NJ4 + N;+,@). H ence we may write the zeta function of (1.5) as 

co,o(S) -: 2 (-A)-” N,(h) 

=- c (-A)-“(N,,‘(X) + A$, ,(A)) 

= 2 (-A)-“(N;(A) $ fy~,(h)), 

yielding 

(2.4) 

Finally, the duality operator * : .9 + QNpq, satisfying *da = 6d*, 
defines an isometry of 4’(h) onto e‘;-,,(h). Hence N,‘(A) = N;-,(h), 
which upon substitution in (2.5) shows that 

when N is even. 

THEOREM 2.5. Suppose W, and W, aye oriented compact manifolds 
without boundary, and suppose W, is simply connected. Then the analytic 
tovsion of the product mamyold WI x Wz is given by 



156 RAY AND SINGER 

where x( W,) is the Euler characteristic of W, . (See [5] -for the come- 
spending result for R-torsion.) 

Proof. By Theorem 2.1, we are free to choose the metrics arbitrarily 
on the three manifolds. So we can assume that WI x W, has the product 
metric of those of WI and W, . 

Let 0 be a representation of the fundamental group 7~i( WI x W,) 
by orthogonal matrices. Since z-i( W, x W,) = n,( WI), the associated 
vector bundle E(0, W, x W,) is the same as the vector bundle E(0, WI) 
lifted to WI x W, via the projection map of W, x W, onto WI . 

Suppose fi E Sp( W, , 0) and f2 E 9*( W,), the latter space consisting 
of real-valued P forms on W, . Let fl @ fi be the wedge product 
of fi and fi , lifted to W, x W, . Such forms, for p + q = r, span 
9?“( W, X W, , 0). Clearly 

and, since the metric on WI x W, is the product, 

Using these in the definition of the Laplacian A = -da - ad, 

Hence if fi and fi are eigenforms of the Laplacian, with eigenvalues 
A, and A, , then fi 0 f2 is an eigenform with eigenvalue A, + h, . Since 
the forms fi @ fi span 9( W, x W, , 0), all eigenforms of the Laplacian 
on .GS(W, x W,, 0) are obtained in this way. 

Suppose now that for each q, zero is not an eigenvalue of the Laplacian 
on 9q( WI, 0). Then the same is true of 9q( WI x W, , 0), and TW1(0) 
and TyIXW*(o) are both defined. Let N,,(h, WI) and iV&, W,) denote, 
respectively, the multiplicities of the eigenvalues h and p of the 
Laplacian on the spaces 9( W, , 0) and @(W,). Then according to 
the preceding paragraph, the zeta function of the Laplacian on 
%r( W, x W, , 0) is given for Re s large by 
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and the alternating sum in the definition of the analytic torsion is 

(Nr and N, denote, of course, the dimensions of the manifolds IV, 
and IV, .) 

We now follow the path which led to formula (2.4). If X # 0, let 
ili,‘(A, IV,) denote the dimension of the space 

cY’(h, IV,) = (4 E 8p(X, W,), d+ = 0} 

:= {#, t @‘(O, WI), dS4 = A+). 

We have, as before, NJ/\, IV,) = N,,‘(A, IV,) + N;,+,(h, IV,); but this 
implies 

,g (--1)” N,@, WI) = 0, 

and the second sum on the right above vanishes. Similarly, 

,p)wP, W*) = 0 

for each nonzero eigenvalue p of d on .@(W,). 
Hence 

= c (-w (,5, (6l)“PN,@, W)$” (-l)“N*(O, w). 
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By the Hodge theorem, N&O, IV,) equals the g-th betti number of 
IV,, so that 

This identity has been proved for Re s sufficiently large, but of course 
it holds throughout the s-plane for the meromorphic extensions of the 
zeta functions. In particular, it implies the relation given in Theorem 2.5 
for the analytic torsion. 

The last of the three formal results involves the notion of induced 
representation [6]. Suppose G, is a group, and G, is a subgroup of 
finite index Y in G, . Suppose 0 is a representation of G, by n x n 
matrices. Let V be the space of maps C# of G, into Rn which satisfy 

for g, in G, . V is a real linear space of dimension nr, and the induced 
representation U” of G, is defined on V by right translation: 

U0(g2) m = ~k&)~ g, E G, . 
THEOREM 2.6. Supp ose W, and W, aye oriented compact manifolds 

without boundary, with the same universal covering manifold @? Suppose 
the fundamental group vl( WI) is a subgroup of rl( W,). Then the analytic 
torsions satisfy 

where U carries a representation 0 of x1( WI) into the induced representation 
Co of rI( W,). (A similar identity for R-torsion is given in [I 31.) 

Remark. The fact that W, is compact clearly implies that z-i( WI) 
must have finite index Y in z-i( W,). 

Proof. By Theorem 2.1, we can assume that W, and W, have 
Riemannian metrics which lift to the same metric on the common 
universal covering space I@. Let 0 be a representation of 7~i( W,) by 
n x n orthogonal matrices, and E(0) the corresponding vector bundle 
on W, . We will establish an isomorphism between 9q( W, , 0) and 
5@( W, , U”) which commutes with the Laplacian. Thus the spectrum 
of the Laplacian is the same on the two spaces, and Tw,( U”) is defined 
and equals Twl(0), whenever the latter is defined. 
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It will be convenient to consider besides the representation CT0 an 
equivalent representation defined as follows: Write G, for ri(W’,) and 
G, = Uhzl G,q. for nl( W,), where the 01,~ represent the cosets G,/G, , 
with u1 = e. Since a map 4 in V is determined by its values on the ~1,~ , 
T+ = LX;=, 0 4(q) d e fi nes an isomorphism of V onto the direct sum 
R”’ of 1’ copies of Rn. LetO(g) =O(g)ifgrG,,C&g) =Oifg$G,, 
and define the representation p of G, on R”’ by 

P(g) (2 @Y/c) = i; 0 i: o(akEaY’)Yj . 
L=l ,=I 

Then p and U” are equivalent; for if 4 E V, then 

TC0k)4 = c 0 c’“(d+(4 

= c @C(w) 

= P(g) (C 0 +Cmi)) 

= P(g) 7’6 

since each CQ g is uniquely expressible as glaj for g, = CQ~CX;’ in G,, 
Now the space C$( IV, , 0) can be identified with q-forms f on W 

with values in R” such that f( gix) = 0( g,)f(x), g, E G, . Similarly, 
using the equivalence T, the space .W( IV,, Co) can be identified with 
q-forms j; on @’ with values in R”’ satisfying j( gx) = p( g)p(x). For 
a form f on l%’ with values in R”, let Sf be the form on m with values 
in Rrr8 defined by 

If f satisfies f( g,x) = 0( g,) f (x), g, E G, , then 

Thus S defines a map of P*( IV, , 0) into P( IV,, U”). The map is 
certainly injective. For p = C @ fj in 9”( IV, , U”), an easy computation 
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shows that fi is in %q( IV,, 0) and f = J?$i , so S is also surjective. 
Finally, the Laplacian commutes with S, since it commutes with the 
action of G and acts componentwise. 

Remark. For h # 0, let &z(h) be the space of q-forms j on m 
satisfying Aj = A& Th e action of G, = n,( IV,) on IV, commuting 
with the Laplacian, determines a representation U of G, as unitary 
operators on d:(h). Th e multiplicity N&h, 0) of X in @(IV, , 0) is 
given by the intertwining number I(0, U,J [6] of the representations 
0 and UG, , the restriction of U to G, . Thus Theorem 2.6 is simply 
a restatement of the Frobenius reciprocity theorem I( U*, C) = I(0, UCl). 

Besides the three preceding theorems, there is a very important 
property of R-torsion which we can state for the analytic torsion, but 
have not been able to prove. Namely, suppose IV is a compact oriented 
manifold with boundary 44’. Let K be a triangulation of IV, and L a 
subcomplex of K which is a triangulation of M. Let 0 be a representation 
of n,(K) by orthogonal matrices, and suppose that the homology groups 
of the corresponding complexes C(K, 0), C(L, 0), and C(K/L, 0) are 
free modules with preferred bases. Then [lo, Theorem 3.21 

log Q(O) = log Q(O) + log TK,L(O) + log %(q, 

where TV is the torsion of the homology exact sequence of the triple, 
thought of as an acyclic chain complex of dimension 3N + 2. The 
analog of this statement is formed by replacing ‘TV, 7L and rKiL by the 
analytic torsions of the Laplacians, respectively, on IV with absolute 
boundary conditions, on M, and on W with relative boundary conditions. 
(The boundary conditions are described in Section 3.) If this property 
were proved for the analytic torsion, one could hope to prove the two 
torsions equal by copying the combinatorial invariance theorem [IO, 
Theorem 7.11 for R-torsion, or Theorem 9.3 of [lo]. 

The last-mentioned theorem establishes a construction of R-torsion 
(or more generally, Whitehead torsion) for manifolds in terms of self- 
indexing functions. This construction has led us to what seems to be a 
feasible program of proving that 5”,(0,)/~,(0,) = T,(0,)/~,(0,) for 
two representations 0, and 0, of Z-~(W). 

That is, let $ be a self-indexing function on W, and let 
w,, = $-l([O, ZL]). If u is not an integer, W,, is a compact manifold with 
boundary MT, = +‘( u , and for a representation 0 of n,( W) we have the ) 
restriction of the corresponding vector bundle E(0) to W,, . In Section 3 
we will present definitions of R-torsion and analytic torsion for this situa- 
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tion, where the homology may not be trivial. In Section 7 we will prove 
that for the extended torsions, log(T,(O,)/T,(O,)) - log(TW(0,)/7W(02)) 
is invariant under a change of metric on W which preserves the normal 
direction to the boundary. 

But for any metric on W, the dual to d+ is a vector field X orthogonal 
to M,, for all u. Whenever W,,, - W,, contains no critical points, the 
vector field X determines a diffeomorphism F : IV,, + IV,,, . Since F 
preserves the normal vector X to the boundaries, we conclude by 
Theorem 7.1 that log( T,~~(O,)/TWz,(O,)) - log(:,tt(0,)/T,8,(0,)) is inde- 
pendent of u as long as one does not pass a critical point. For small U, 
both terms are trivially zero since IV,, is a cell. If one could prove that 
both terms have the same jump as a critical point is crossed, then the 
equality of the two terms for W would follow. 

As a final bit of evidence that T, and 7W may be equal, we point 
out that for lens spaces, the analytic torsion can be calculated explicitly 
and agrees with the R-torsion [14]. 

3. A TORSION FOR RIEMANNIAN MANIFOLDS 

The setting for the remainder of the paper will be essentially that of 
[lo, Section 91. W. is a compact, oriented, C” manifold of dimension N, 
whose boundary is the union of two disjoint, closed submanifolds n/l, 
and IPI, . We do not exclude the possibilities that M, , iVlz, or both, 
are empty. 0 is a representation of the fundamental group r,(W) by 
orthogonal n x n matrices. 

The relation between this situation and that described at the end 
of Section 2 is as follows. Let W’ be a closed oriented manifold (the 
case of Section 2), or let W’ be an h-cobordism: a compact oriented 
manifold with boundary the union of two disjoint closed submanifolds 
M,’ and M2’, each of which is a deformation retract of W’. Let + be 
a self-indexing function on W’ such that @‘(- l/2) = M,‘. If u is not 
an integer, then W = (W’),, = $-“([- I /2, u]) is a compact manifold 
whose boundary is the disjoint union of M, = M,’ and Ma = +-‘(21). 
(M, is empty, of course, if W’ is closed.) 

In either case, let 0’ be a representation of the fundamental group 
of W’ by orthogonal matrices. Since W is a submanifold of W’, there 
is a natural homomorphism of QT~( W) into z-i( IV’), which composed 
with 0’ defines a representation 0 of nl( W). Thus we have the situation 
described in the first paragraph. We will eventually have to identify 
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the bundle E(0) on IV with the restriction of E(0’) to IV. But this 
is not difficult; the details are given in the proof of Corollary 8. 

Let K be the simplicial complex of a C”, m > 2, triangulation of IV, 
which contains subcomplexes L, and L, triangulating M, and Mz. 
Let C(R,E,) be th e relative chain group of the simply connected 
covering space I? of K, modulo that of L, . As in Section I, we may 
think of C(I?, 2,) as a module over the real group algebra R(ni). A 
preferred basis is given by choosing cells covering those in K - L, , 
We define the chain complex C(K, L, ; 0) by 

C(K, L, ; 0) = R” @ C(R, &) 
R(nl) 

where the representation 0 is used to make R” a right R(-rr,) module. 
If the chain complex C(K, L, ; 0) happens to be acyclic, we can 

define the R-torsion of K modulo L, as in Section 1 or [lo, Section 91. 
The remarks following Definition 1.3 are valid; in particular, the 
R-torsion is invariant under subdivision and hence is a function of the 
pair (IV, &I,). In the program described at the end of Section 2, however, 
the complex C(K, L, ; 0) will in general have nontrivial homology. 
We can then define the R-torsion only if we can choose a preferred 
basis of the homology classes. 

In order to do this, we suppose that W is equipped with a Riemannian 
metric. The euclidean structure which the metric determines on the 
tangent space allows us to define a normal vector to the boundary at 
each boundary point of W. Accordingly, at a boundary point of W 
we can decompose a real differential formf into its normal and tangential 
components: f = .L + fnorm . To be explicit, let 7 be the inward- 
pointing unit normal in the cotangent space at a boundary point. If f 
is a l-form, thenf,,,,, is the orthogonal projection off on the subspace 
spanned by 7. In general, we can write 

f nclrm = g A 7, where *g = (*f) A 7. (3.1) 

The decomposition f = ft,, + fncrrrn is likewise defined, component- 
wise, for a differential form f with values in the vector bundle E(0) 
associated with the representation 0. 

DEFINITION 3.2. A differential form f is said to satisfy relative 
boundary conditions at a boundary point of W if f&, = (i3f)tan = 0 
there. It satisfies absolute boundary conditions if f,,,, = (df )nc,p,n = 0. 
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We will denote by “r = 9( W, 0) = 1 -c/*( IV, 0) the space of C” 
differential forms on W with values in E(0) which satisfy relative 
boundary conditions at each point of the boundary M, and absolute 
boundary conditions at each point of ,%I, 

The boundary conditions introduced above are coercive for the 
Laplacian; in particular, the de Rham-Hodge theory holds [2]. That is, 
let X = C .Xq be the space of harmonic forms in 9 (h t X means 
h E 9 and dh = 6h = 0). Let Aq : -Xv --f Cq(K, L, ; 0) denote the 
de Rham map defined by 

-+h(t 0 e) = J‘ (5, h), (3.3) ,’ 

where e is a q-simplex in K, e E Rrt, and ( , ) denotes inner product 
in R”. Then Aq is a one-one map of JYQ onto a linear space of cocycles 
representing H”(K, L, ; 0). (See the remark after Proposition 4.2). 

For the present, note that A*h is indeed an element of Cq(K, L, ; 0). 
For if e is in L, , Aqh(t @ e) = 0 since htan = 0 on M, . And if h” is 
the form obtained by lifting h to the simply connected covering space m, 
then for g in QT~( IV) acting as a deck transformation on m, 

i ,,,, (t, 4 = J’ (6, h “g) <’ 

= ^ (5, O(g) 4 J,. 

= i W(g), 4. 
j (1 

Now the Riemannian metric picks out a preferred base of ~7” for us, 
viz., an orthonormal base. And we can use duality of forms, the de Rham 
map, and Poincare duality to map Xq onto a set of representatives of 
homology classes in C&K, L, ; 0). Thus we obtain, as the image of 
an orthonormal base in X*, a preferred base of the homology classes 
by which to define the R-torsion, 

Since we will make extensive use of the map described above, we 
will give a detailed definition. Let us start by reviewing the Poincare 
duality for the complex K. Let K’ be the barycentric subdivision of K, 
considered as another Cm triangulation of W. As an abstract simplicial 
complex, the vertices of K’ are the simplexes of K. These are partially 
ordered by incidence in K, and a simplex in K’ consists of a linearly 
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ordered subset. K’ becomes a triangulation of W by means of the 
barycentric coordinates in K. 

For each q-simplex e of K, the dual (N ~ q)-cell *e of e is the union 
of those simplexes in K’ whose lowest vertex is e. Strictly speaking, 
*e is not a P cell in IV, but rather the union of Cm cells; but this 
will not affect the forthcoming definitions, since integration of an 
(N - q)-form over *e is well defined. If e is in the subcomplex Lj , 
j = 1, 2, then e has, besides *e, another dual cell *ye of dimension 
N - q - 1, its dual in the submanifold n/l, . 

FIG. 1. A 1 -simplex e in L, and its dual cells *e of dimension 1 and *le of dimension 0. 

The cells *e, for e in K - L, , are just those which are disjoint from 
Mi and meet M, only along their boundaries. These cells, together 
with the cells “‘e, e in L, , thus form a cell complex K* in IV. 

If L,* denotes the subcomplex of K* consisting of cells *ze for e 
in L, , then the collection *e, e in K ~ L, , is a base for the relative 
chain complex C(K*, L,*). The one-one correspondence e c) *e of 
bases determines an isomorphism pq of the chain group C&K, L,) onto 
the dual of C&K*, L,*). Using the orientation of K* determined by 
the fundamental cycle in C,(K, L, u L,), we have for c in C,+,(K, L,), 
c* in C&K*, L,*), 

(ac*, &+,C) = (-l)‘-+yc*, p&). (3.4) 

(We write 3 for the generic boundary operator in each chain group.) 
Lifting to the covering manifold m, we denote also by pn the ensuing 
isomorphism of C&K, L, ; 0) onto C+*(K*, L2*; 0). 

Now define A, to be the map A, = (- l)@+l+~;~A~~~ * of XQ into 
C&K, L, ; 0). That is, for h in ZQ, *h is a harmonic (N - q)-form 
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with values in E(O), which satisfies by (3.1) the relative boundary 
conditions on M, . We retain the symbol A”+ for the de Rham map 
(3.3) of forms into C”-g(K*, L2*; 0). The composition A, is given 
explicitly by the formula 

z4$ = (- l)(s-l)f~~ J (5, *h) . (8 GJ e) (3.5) 
*t. 

where the summation runs over the q-simplexes e of K - L, and the 
elements 5 of an orthonormal base of R”. Stokes theorem, the definition 
of 2, and (3.4) show directly that 

Finally, the de Rham-Hodge theory shows that A, maps 2’~ onto a set 
of representatives of the homology classes in C&K, L, ; 0). 

DEFINITION 3.6. For the situation described in this section, the 
R-torsion 7K,L1 (0) of the pair (K, L,) will be that given by Definition 1.1 
for the chain complex C(K, L, ; 0), where a preferred base of the 
homology classes is chosen as the image under A, of an orthonormal 
base of A9, for each q. 

Remark. Since a change of orthonormal base in .Xq is given by an 
orthogonal matrix, the R-torsion defined above is independent of the 
choice of one orthonormal base. It is again independent of the choice 
of representatives in E of the simplexes of K (see the remark after 
Definition 1.3). Hence, the R-torsion 7K,L1 is a function only of the 
representation 0, the triangulation (K, L,) and the Riemannian metric 
assigned to W. 

PROPOSITION 3.7. The torsion ‘T~,~~ of Definition 3.6 does not depend 
on the choice of the triangulation of W. 

The proof will be given at the end of Section 4. In Section 7 we 
will describe the behavior of the R-torsion of Definition 3.6 resulting 
from certain variations of the Riemannian metric on W. 

4. THE DE RHAM THEOREM FOR A COMPACT MANIFOLD 

WITH BOUNDARY 

The proof of Proposition 3.7 depends on a form of de Rham’s theorem 
which relates the duality between homology and cohomology with the 
duality of differential forms on a Riemannian manifold. It was proved 
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by Kodaira [4] for closed manifolds, and no important changes are 
needed to apply his proof to manifolds with boundary. 

Let us start by summarizing the setting for the theorem, as described 
in Section 3. W is a Cm compact oriented Riemannian manifold of 
dimension N, with boundary consisting of disjoint closed submanifolds 
Ml and M, , either or both of which may be empty. 0 is a representation 
of the fundamental group or by orthogonal n x n matrices, and 
E(0) is the associated vector bundle. 

K is a Cm triangulation of W, m 3 2, with subcomplexes L, and L, 
triangulating the boundary manifolds M, and M, . C(K, L, ; 0) is the 
chain complex of the relative complex K modulo L, formed by the 
action of ~r( W) on the covering space K and by the representation 0. 
K* is the dual cell complex formed from the barycentric subdivision 
of K and C(K*, L 2*; 0) the associated chain complex of K* modulo L,* 
Finally, the isomorphism pu : C&K, L, ; 0) + C”pq(K*, L,*; 0) is 
defined by the pairing of the base elements e, *e, where e is in K - L, 
and *e is its dual cell in W. 

Rather than consider the space 9 of Definition 3.2 on the subspace .x? 
of harmonic forms in 9, we will now define two spaces of forms, whose 
intersection is AT. 

DEFINITION 4.1. Let Zq be the space of Cm differential g-forms f 
on W with values in E(O), satisfying 

Sf = 0, 
.f*orm = 0 on M, . 

Let 557 be the space of P q-forms f with values in E(0) satisfying 

df = 0, 
ftan = 0 on Ml . 

PROPOSITION 4.2 (de Rham’s theorem). The map AQ defined by 
(3.3) carries 52fq onto the space of cocycles in Cg(K, L, ; 0), and 
A, = (-l)(N-l)Qp;lk!N-Q * (see (3.5)) carries ~2’~ onto the space of cycles 
in C,(KL, ; 0). !fff is in 8, and g is in S?q, then 

(f,g) = j,p *g 

= (-l)(w-l)n 1 (j *f, j R) 
K-L, -6 e 

= (A,(f), ~“k)). (4.3) 
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Remark. By (4.3), A,(f) is a boundary in C&K, L, ; 0) if and 
only if f is orthogonal to Tq. Hence as a corollary to 4.2, A, maps 
.Fn = ZZf”, A ZYQ one-one onto a set of representatives of the homology 
classes in C,(K, L, ; 0). 

Kodaira’s proof for closed manifolds proceeds by using a “Poincare 
lemma” to pull f back to a neighborhood of the q-skeleton of K and 
g to a neighborhood of the (N - g)-skeleton of K*. Once this is done, 
the supports of f and g will intersect only in disjoint neighborhoods 
of the barycenters of q-simplexes of K, and the proof of (4.3) becomes 
a local affair. 

One way to apply this procedure to our situation is to replace f by 
a form vanishing near AY, and g by a form vanishing near n/r, . We 
will do this, and show that the forms will continue to vanish in these 
regions during the pulling back described above, in a pair of lemmas. 
Then we will be able to apply Kodaira’s proof with only minor changes. 

LEMMA 4.4. Suppose f is in Zip, and g in 5. Then there are forms 
fN in ZYq and g, in ZZq such that the support of fhr is disjoint jiiom M, , 
the support of g, is disjoint .from M, , and 

Proof. If q = 0, ZD contains only the null function unless M, is 
empty, so g, = g will t rivially have support disjoint from nil, . So 
suppose q > 0. 

Let xN be a smooth function without critical points from a neighbor- 
hood N(llil,) of M, onto [0, 1) such that M, = (xl”-l(O). Such a function 
can easily be constructed by using a partition of unity. Let X be the 
vector field in this neighborhood which is dual to dxN, and integrate 
along X as in Section 3 of [9] t o construct a diffeomorphism of Mr x (0,l) 
onto N(M,). If x = (xl,..., x lVpl) is a local chart in M, and 0 < xN < I, 
then under the diffeomorphism (x, xl”) becomes a chart in N(Mi). 
Because we have chosen X dual to dxN, this chart has the property 
that (dxN)t,,, = 0, while (d&,,,,,, = 0 for i < N, on M, . 

Writing a form g in N(Mr) as 
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where gil...i, is an alternating function with values in R”, set 

where 

R,g = C (Rlg)il...i,m, d& A ... A d&l, 
i,. .i,-, 

(Rldil...ip~l(x, x”) = (-l)“+l r^’ gil...i,_,,N(x, tx”) xjv dt. 
0 

Since this formula is invariant under change of local coordinates in Mi , 
it serves to define R, g consistently throughout N(Mt). Note that R, g 
vanishes for xN = 0. Computation shows that if 

gt,&) = c gil...i,(x, 0) dxil A ... A dxTcl 
il...i,<.V 

= 0, XEM~, 

then 

dR,g + R, dg = g. (4.5) 

Now for g in 59, apply R, to the restriction of g to N(M,), and let 

go = g - dW,g), 

where # is a smooth function vanishing outside N(M1) and equal to 
one in the neighborhood 0 < a+ < l/2 of Ml . (4.5) shows that g, 
vanishes for xN < l/2 and so is in 39. 

If f is in Zq, then 

G%(f), 49) - (4(f)! A4(goN = b%cf)~ ~“kww) 
= Mf), ~*4wlgN 
= W%(f), ~‘WW) 
= (Wf), AgWW 
= 0. 

On the other hand, applying Stokes’ theorem to 

4&g * *f) = (g -go) A “h 
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the resulting integrals over M, and M, vanish since ( *f)tan = f,,,,ll = 0 
on M2 and since R,g = 0 on M, . So 

(f, d = (f, go). 

We construct fN (for g < N) by applying a similar operation in a 
neighborhood of M2 to the closed form *f, and this completes the 
proof of 4.4. 

LEMMA 4.6. Let e be an r-simplex in K - (L, u LJ, and suppose 
that f is a Cm q-form whose support is disjoint from M2 and is contained 
in a neighborhood of e. Suppose that the support of Sf is contained in a 
neighborhood of i3e. Then if r > q, there is a C” (q + I)-form R, f such 
that the support off - 6R,f is disjoint from M, and is contained in a 
neighborhood of i?e. 

Let e be an r-simplex in K, and suppose that g is a Cm q-form whose 
support is disjoint from MI and is contained in a neighborhood of the 
dual (N - r)-cell “e. Suppose that the support of dg is contained in a 
neighborhood of a( *e). Then if r < q, there is a C” (q - 1) form R2,,g 
such that the support of g - dR,,g is disjoint from M, and is contained 
in a neighborhood of a( *e). 

Proof. Given the r-simplex e in K - (L, u L,), there is a Cm chart 
1 x ,..,, xN defined in a neighborhood of e such that, given 6 > 0, 

while if e has a face in M2, x1 = 0 on M, and x1 > 0 on e - M, . 
We can assume that 

j-0 if ~(~+)~>6 or i(~+)“>f, 
T+l 1 

sj = 0 if jj (2~~)~ .< 1 - 6, 
1 

and f = 0 for 0 < x < 6 if e has a face in M, . 
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m’riting the closed (N - g)-form *f as 

*j. = 1 (*f)il...i,vm,, d&d’ A ... A dd” -0, 
il...i‘v--‘l 

set 

(Qe*f)il...iN&4 = gl xi ,; t#(*f))i.i,...iN_u~l(t~l ,..., txr, xT+l ,..., A?‘) dt, 

where # is the number of integers among i, *.. i,-,-, which do not 
exceed Y. 

Q,*f is defined in the given neighborhood of e, and vanishes if 
C,“,, (x”)” > 6. Qe*f vanishes also for 0 < x1 < 6 if e has a face in M, . 
Qe*af = (-l)*Qed *f vanishes in the same regions, of course, and 
vanishes also if xr (xi)$ < 1 - 6. Note that in the integral defining 
the components of Qe*Ef, we will have # > 0, since Y > q. Using 
this fact, computation shows that 

in the neighborhood. 

dQe*f t Qed “f = f (4.7) 

Now let Z/J be a C”O function of xl,..., xT such that 

#=O if i(S), > 1, 
1 

#=l if f. (A@)~ f 1 - 6, 
i 

and define 

R0.f = (-1)” * #Qe*j, 

extending R,f to be a Cm (q + 1)-f orm vanishing outside the given 
neighborhood of e. Then (4.7) h s ows that R, f has the properties 
described in 4.6. 

The function R,,g is again constructed by the dual process applied 
in a neighborhood of the cell *e. 
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LEMMA 4.8. Let U be a neighborhood in W which is homeomorphic 
to the open unit cube in R”‘. 

Suppose f is a C” q-form, q < N, with support contained in C:, and 
suppose Sf = 0 if 1 < q c: N, s *f = 0 zy q = 0. Then there is a 
C” (q + 1)-fawn f’ with support contained in CT such that f = Sf I. 

Suppose g is a C” q-form, q > 0, with support contained in CT, and 
suppose df = 0 if 0 < q c; N, sg = 0 if q = N. Then there is a 
Cm (q - I)-form g’ with support contained in C’ such that g = dg’. 

This is precisely Lemma 3.1 of [4], and we will not repeat the proof. 

I,EMMA 4.9. Let U be a neighborhood in W which is homeomorphic 
to the closed unit cube in R”, and suppose the face (x”)pl( 1) lies in M, 01’ M2 . 

Suppose f is a Cm q-form, q < N, with support contained in c’, and 
suppose Sf = 0. Then there is a C” (q + I )-foYm with support contained 
in U such that f = Sf I. 

Suppose g is a C” q-form, q > 0, with support contained in CT, and 
suppose dg =z 0. Then there is a Cm (q - 1 )-foym g’ with support contained 
in U such that g = dg’. 

Proof. The proof uses the same operator R, as in the proof of 
Lemma 4.4, but applied in the opposite direction, so to speak. That is, 
writing 

set 

where 

(~lg),l...iy~l(r) = (-I)“+’ j~gi~...~~,~l,N(x’ ,..., x‘L-1, tx“) P dt. 

Since the face (&‘-‘(I) 1’ res in the boundary of W, g’ = R, g is a C” 
form with support in U, without further alteration. And by (4.5), 
we have g = dg’ when dg = 0. 

We will now proceed to the proof of (4.3). Let K, be the union 
of the simplexes of K of dimension <q, and let K$-, be the union 
of the dual cells *e, e E K of dimension <N - q. Given f in ZYq and 
g in Zq, we construct q-forms f, and g,-, such that (compare with 
Lemma 3.2 of [4]): 
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The support off, is disjoint from M, and is contained in a given 
neighborhood of M, v K, ; 

The support of gNPq is disjoint from M, and is contained in a given 
neighborhood of M2 u K$-, ; 

We construct f, by defining inductively coclosed q-forms fr , 
q < Y < N, such that the support of fr is disjoint from M, and is 
contained in a given neighborhood of 111, u K, , and such that 

u-r Y d = (f, g), (4.10) 

MdfA A’lk) = (4(f), J%))F (4.11) 

for g in 39. 
Note that to start the procedure we have the form fN given by 

Lemma 4.4. So suppose that Y > q, and that f, has been defined. For 
each r-simplex e in K, let $J, be a nonnegative function vanishing outside 
a neighborhood of e, such that (4, , e E K,} form a partition of unity 
on K, . We can suppose that the q-form (1 - #,) f, has support in a 
given neighborhood of ae, and $, f, = 0 for e EL, . For e not in 
L, u L, , $, f, satisfies the hypothesis of Lemma 4.6. Set 

Since f+. = C +, f, , application of 4.6 to each form #,fr - 6R,($, fr) 
shows that frpl has support disjoint from M, and contained in a given 
neighborhood of Ml u K, . (4.10) and (4.11) follow just as in the proof 
of Lemma 4.4. 

Again, g,-, is constructed by the dual procedure. 
We can assume that the neighborhoods of Ml u Kg and M, u K$& 

have been chosen so that the support of g,-, A *f, is contained in the 
union of disjoint neighborhoods of the barycenters of q-simplexes of 
K - (L, u L2). Th us if we suitably define smooth functions {$J~ , e E K,) 
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and {$* form pa~~~i~n~o;iln~~s~h~~strictions to K, and K$-rl , respectively, 

(f> 6, =z (f* 9 RN-P) 

== fE,e; “L ) C&f* ) ale’%*), 
’ 12 

Pw)> md) =- b%(fJ, ~‘ikh7)) 

Hence it suffices to prove (4.3) for each of the summands above. 
In other words, it suffices to prove (4.3) under the assumption that f 

has support in a neighborhood of a q-simplex e of K - (L, u L,), 

g has support in a neighborhood of “e, and Sf and dg have support 
in neighborhood of %e and a(xe), respectively. But this is just Lemma 3.3 
of [4] ; for clarity (and since a minor change is necessary), we will repeat 
Kodaira’s proof. 

For p = 0, N, the proof is trivial since (if q = 0) the function g is 
constant in the support off. The proof for 0 < g < N proceeds by 
induction. Let e’ be a (q + 1) simplex such that e lies in i3e’. Applying 
Lemma 4.8, or Lemma 4.9 if e’ meets L, , there are forms f’, f” with 
supports in neighborhoods of Se’ - e and e’, respectively, such that 

Sf’ = Sf, 
Sf” = f -f’. 

We can assume that f’ vanishes on the support of g, so that 

(f,d = (V”,‘d 
= (f”, 49. 

But there is a (q + I)-form g” with support in a neighborhood of *e’, 
such that g” = dg near e’, dg’ = 0 outside a neighborhood of a(*e’). 
By the induction hypothesis, (4.3) holds for the formsf”, g”. Then 

(“f-7 d = (f”7 g”) 
= b%(f”)~ 4g”)) 
= (~~)'"-"'"+1 

(j,,. *f n, j,. g'i 

= (-lyl’Q (J*, *t, J,Ej> 

proving the induction step. 
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To see that A, maps ZYq onto the space of cycles in C,(K, L, ; 0), 
Kodaira’s proof can again be used. One constructs, by induction, 
linear maps B, of C&K, L, ; 0) into Cm q-forms on W with the proper- 
ties: 

For each c in C, , B,(c) vanishes in a neighborhood of M, ; 
For each q-simplex e of K - L, , B,(e) has support in a neighborhood 

ofe; 

A,B,(c) = c; 

B,(&) = SB,(c). 

It does not seem worthwhile to repeat the details in this case; we refer 
the reader to [4]. We will point out, however, that in defining B,(e) 
when e meets L, , one must use Lemma 4.9 rather than 4.8. The reason 
for this is clear when q = I. B,(e) is to be defined as a solution of 
as,(e) = B,(ae). L emma 4.8 cannot be applied if e meets L, , since 
then s *B,(de) = 1. 

Of course, remarks of a similar nature apply in constructing dual 
maps BP to show that Aq maps Zz? onto the space of cocycles. 

We turn to the proof of Proposition 3.7. As in the proof of Lemma 9.1 
of [IO], we want to show that TV L = TV’ L ’ , when K’ is a triangulation 
of W which subdivides K. To ho this’, ‘however, we can apply the 
Combinatorial Invariance Theorem 7.1 of [lo]. We need only check 
that the preferred bases of the homology groups H&K, L, ; 0) and 
H,(K’, L,‘; 0) correspond under the subdivision operator. 

That is, we have chosen a fixed orthonormal base (h,) of the 
space ,@q of harmonic forms in @(W, 0), 0 < q < N. The torsion 
7K,L1 was defined by using the preferred base of H,(K, L, ; 0) repre- 
sented by the cycles Aa( and 7K’,L,’ by the base of H,(K’, L,‘; 0) 
represented by the cycles Aa’( 

We have also the subdivision operator S of C,(K, L, ; 0) into 
C,(K’, L,‘; 0) given by 

Se = C e’. 
P,CC 

As is well known, S determines an isomorphism of H,(K, L, ; 0) onto 
H,(K’, L,‘; 0), and the Combinatorial Invariance Theorem states that 
the torsions of the two complexes are equal if the preferred bases of 
the homology groups correspond under this isomorphism. 
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So we have to show that the cycles (Ay’(lz,)) and (SA,(h,)) represent 
unitarily equivalent bases of H,(K’, L,‘; 0), which is not immediately 
obvious. 

What is obvious is that for any g-form g, 

But then for f in ZFq and g in 9, 

= b%‘(f), 4‘d). 
According to the remark after Proposition 4.2, this means that SA,(f) 

and A,‘(f) differ by a b oundary. In particular, the cycles (Aa’( and 
(S/l&h,)) represent the same base of H*(K’,Lr’; 0), and so the Com- 
binatorial Invariance Theorem can be applied to prove Proposition 3.7. 

5. THE HEAT KERNEL ON W 

In this section we will construct and derive some properties of the 
fundamental solution of the initial-value problem 

(5.1) 

for forms in the space 9 = g(lV, 0) of Definition 3.2. 
The initial-value problem (5.1) f or real forms on a manifold with 

boundary was investigated by Conner in [2]. He showed that in the 
Hilbert space of square summable forms, the Laplacian on forms 
satisfying either the relative or absolute boundary conditions of 3.2 
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extends to the generator of a semigroup of compact self-adjoint operators, 
each of which commutes with d and 6. Conner’s results, of course, 
extend immediately to forms with values in the bundle E(0). 

The operators of the semigroup are given by a kernel, which is the 
fundamental solution of (5.1). W e will construct the fundamental 
solution by the parametrix method of E. E. Levi; this will provide us 
with the local estimates needed in Sections 6 and 7. The parametrix 
method was used by Milgram and Rosenbloom [7] to construct the 
fundamental solution of the heat equation for forms on a closed 
manifold: the modification of the parametrix to make it satisfy the 
boundary conditions follows the integral equation method used, for 
instance, by Conner [2]. A very careful exposition of these methods 
is presented by Friedman [3], and we will refer to his work for a number 
of estimates and calculations. We depart, however, from these methods 
by using a specialized form of the parametrix, as in [I I], which makes 
evident the property of the heat kernel used in the proof of Theorem 2.1. 

In order to describe the local estimates of the heat kernel, it is useful 
to bring in a distance function p on W. This is a function of the pair 
of points (x, y) of IV with the properties 

p”(x,y) is C” on W Y W, 

P(X, x) = 0, P(‘TY Y) > 0 for x +y; 

& P2Cx, Y) = gij(x) when y = x. 

Such a function can easily be constructed using local coordinates and 
a partition of unity. Set 

k(x, y, t) = Kt-Nl~e-cp2(x.“)/t; (5.2) 

K and c are generic constants, which may depend, for instance, on a 
choice of local coordinates. 

PROPOSITION 5.3. Given a continuous form f on W as initial value, 
the unique solution in S( W, 0) of (5.1) is given by 

= s P(X,Y, t) * *f(Y), 
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where the kernel 

P(x,y, t) = c P71...i,;il...i,(.~,y) t) dd’ A .” A dx’y a)” A ‘.’ A dy”i 

is a symmetric double form which fog each t > 0 belongs to ‘3 as a function 
of each variable on W. 

The kernel P has the property 

d.rf’(~, Y, 4 = 4,+, Y, 4, 

and satisjies the bounds 

-a,,ll,,_ Pit...;,z.j, . ...,, (s,y, t) 1 < t-(r”L’%(.z, y, f), 
(ax”)‘“(Gyy’)” m, n = 0, 1, (5.4) 

for 0 < t < t,, . 
Finally, if x is in the interior of W, the kernel has the local asymptotic 

expansion 

as t -+ 0, where each C,,, is a smooth double form, and where the convergence 
of the remainder term is un$orm on any compact subset of the interior of W. 

Remark. We include the asymptotic expansion (5.5) in order to 
verify, for completeness sake, the claim made in the proof of Theorem 2. I 
concerning the kernel KS of (-A,))“. For suppose W is closed and 
suppose that the cohomology of W with coefficients in the bundle 
E(O) is trivial. Then the expansion (5.5) holds at each point x of W, 
and, since A is strictly negative, P(x, x, t) decreases exponentially as 
t+ co. Thusfor Nodd 

1 = 
K,>(s, x) = ro 

i’ 
t”-lP(x, x’, t) dt o 

1 
s 

% 

W) 1 
t”-lP(x, X, t) dt 

+ J’(s) 0 
~ j t”-lR(x, t) dt, (5.6) 
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where each component of R(x, t) is bounded by a multiple of t112. 
Each term on the right is meromorphic in the half-plane Re s > - l/2 
and vanishes at s = 0 because of the factor l/r(s). 

Before embarking on the construction of the heat kernel P, which is 
rather lengthy, we will state and prove a corollary of Proposition 5.3. 

COROLLARY 5.7. Let A+ be the space of harmonic foms in W( W, 0); 
i.e., h E .i/%‘Q if and only if h E 9 and dh = 6h = 0. 

Let f be a CE q-form on W which is orthogonal to ,~?a. Then 

is in %q and satisjies 

Gf = I= P(t)fdt 
0 

AGf = -f. 

If f is C” on W and satis$es ft,, = 0 on Ml , j&,,,, = 0 on iV12 , then 
f has the Hodge decomposition 

f = dg, + %, + h, 

where g, is in the space Zqel of Dejinition 4.1, dgl is in 23, g, is in 2P+l, 
and 6g, is in ZYq . 

If f is a square integrable q-form on W, and 

then f is in .#q. 

(f> dg) = 0, g E LB-y w, O), 

(f> M = 0, g E s+y w, O), 

Proof. The operator P is clearly compact on square integrable 
forms on W, and has the spectral representation 

WG y, t) = 5 +%,(4 %L(Y), 
n=0 

where 0 = A, < A, < **a < A, -+ 00, and q’n runs through an ortho- 
normal base of eigenforms of A corresponding to the eigenvalue -A, . 
Since the eigenforms are complete, a square integrable form f which 
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satisfies ( f, vn) = 0 f or n > 0 will be harmonic. But for n > 0 we 
can write 

and the statement of the last paragraph of 5.7 follows immediately. 
It also follows from the spectral representation that if f is orthogonal 

to X’Q, then the L2 norm of p(t)f decreases exponentially as t --f co. 
Since for each t > 0, the operator P(t) is a contraction in the L2 norm, 
the integral which defines Gf converges in the L2 norm. In fact, setting 

g, is in 9 for each n, and converges to Gf in L2. Using the heat equation, 

d- f 

in L2 as n --f a. In particular, Gf is a weak solution of dg = -f: 

(GfY 4) = -(f, P)), fp E %4. 

Now Morrey [12, Lemma 4.51 has shown that the quadratic form 
(df> df) + @fY Sf > is coercive for either of the boundary conditions 
f norm = 0 or ftan = 0. This allows application of the theory of elliptic 
operators (see, for instance, [I], especially pp. 141-144) to show that 
the weak solution Gf is a strong solution and in fact belongs to 9. 
We will indicate the notation and some of the results of this theory 
as it applies to our situation. Some of this will in turn be used also 
in the proof of Proposition 6.4. 

To begin with, let f, g be Cm q-forms on W with values in E(0). 
For a: = (ai ,..., a,,,) an m-tuple of integers chosen from I,..., N, and 
for a local chart xi,..., xN, define the q-form (a/&+) f by 

For /3 another such m-tuple, set gno = I’Jg”@j. The N-form 

607/7/2-7 
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does not depend on the choice of coordinates; so we can define 

This is a scalar product in the space of C’“O q-forms; denote by H,,( W, 0) 
the Hilbert space formed by completion in the norm 

II g llm = a, &,‘ + k, B)“Y. 
The Sobolev inequality [I, p. 321 implies that if g is in H,,( W, O), 
then f is C” for 1 < m - N/2. For 1 < m, g has strong derivatives of 
order 1, defined as L2 limits. In particular, dg and Sg are defined for g 
in Hi( W, 0). 

Let V = V( W, 0) be the closed subspace of Hi( W, 0) spanned by 
the P q-forms g which satisfy gtan = 0 on M, and g,,,,,, = 0 on M, . 
There exist constants c i , c2 such that for g in I’ 

This inequality expresses the coerciveness of the quadratic form over V. 
The proof starts with the application of Green’s theorem 

b&,4) + @g, W = -k, “A + I, g * *& - 1 sg * *g. Ml 
The principal part of the Laplacian d is just the operator 

1 (ajaxj) gyapxy 

in the notation we have been using. Thus we have 

(g, 4g) + (g, ,441 = ; J”, & (R? A * &g + (g, 4% 

where A is a linear differential operator of first order. The first term 
on the right will contribute an integral over the boundary Ml v M, 
of W. Near M, , take coordinates xl,..., xN as in the proof of Lemma 4.4, 
so that M2 = (S-l(O), and so that xi is constant along the normal 
to M, for i < N. In these coordinates, giN = giw = 0 for i < N. 
It is not hard to see that g,,,, = 0 on MS for P g implies that 
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(4%m = ( a/&P)gt,, = (8/2x”) g on M2 . Hence the contribution of 
the first term on M, is 

Using a dual argument near AZ1 , we arrive at 

Rut the Schwarz inequality implies 

Kg, 4d G Cd‘?, A, + Gag9 R)“(& d~Y2 

i i(g, R)1 + (Cl t $G2)(g, R)o > -. 

which yields the coerciveness inequality with c1 = i, c2 = (C, -t &‘,“). 
The fact that g,,,,, = 0 on A/l, for Cmg implies (dg),,,,,, = (i3jih”) gtnn 

on M, (and the dual statement at M,) make it clear that V is the closure 
in Hi( W, 0) of W( W, 0). Since for g in ?( W, 0), 

the convergence of g,, and Ag,, in L2 norm imply that g,, is a Cauchy 
sequence in V. In particular, Gf is in V and 

(4, W) + Pg, Wf) = (g,f), g E V. 

It follows [I, Theorem 9.81 that forfin H,,,( W, 0), GJis in H,,,iz( W, 0) 
and in fact 

‘~ Wvr,n < Kllf,l,,, (54 

for some constant K. In particular, if f is Cm, then Gf is Cm and satisfies 
AGf = -f, (Gf ha,, = 0 on M, , (Gf ),l,~pI,, = 0 on M2 . 

Finally, for every g in V, 

Since g,,, can be chosen arbitrarily on M, and gnop,,, on Ml , this implies 
that PGfLI~~ = 0 on M2, (6Gf),,, = 0 on Ml. 

Suppose next that f is C”, orthogonal to Xq, and satisfies also 
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ftan = 0 on Ml , fnorm = 0 on M, . On such forms, clearly, G commutes 
with d and 6, and we can write 

f = -AGf 

= dGSf + SGcif. 

g, = GSf = SGf is in 9’os-1 and g, = Gdf = dGf is in Zq+l. But g, 
also satisfies ( g1)tan = 0 on M, , and this implies (dgl)tan = 0 on M, 
since g, is C*; in other words, dg, is in 99. Similarly, Sg, is in ZZq. 
If f satisfies the boundary conditions above but is not orthogonal to Zq, 
we obtain the Hodge decomposition by applying the above to f - h, 
where h = lim,,, p(t) f is the orthogonal projection off on Xq. 

Note, finally, that for the Hodge decomposition f = dg, + Sg, + h 
as constructed above, (5.8) implies for instance 

Ii & lInL < K llf!lnl (5.9) 

for a constant K * K,,, . This fact will find application in the proof of 
Proposition 6.4. 

We turn to the proof of Proposition 5.3. To start with, embed W, 
as in [2], in a closed Cm Riemannian manifold w’. The vector bundle 
E(0) can be extended to W’ and we can define the space 9(Wr, 0) 
of Cm forms on IV with values in the extended bundle. We will first 
construct the fundamental solution of the heat equation for forms in 
q W’, 0). 

To do this, let Y(X, y) be the geodesic distance between the points 
X, y of W’, which is defined for X, y sufficiently close, say for Y(X, y) < 6. 
Using the differential equation for geodesics, one can derive (see [4, 
Section 41, for instance) 

c P(x) & +, y) & Jqx, y) = 49(x, y), 

Cgi”(x) I & +, Y) = 2A7 + wx, y)). 

It follows from these that for # a function of one real variable and f a 
differential form, for y fixed in IV’, 
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where a/& means the directional derivative of each component of f 
along the geodesic from y, and B is a matrix function, vanishing at y, 
which acts on the components off. 

Still keeping the point y fixed, let @-r(*, y) = 0, and for 
h = o,..., n f 1, let @,,, be a double form vanishing for Y(X, y) 3 26 
and satisfying 

Set 

c r; + B $ k) @,,(.,y) = d%,(.,y), Y(., y) ..c 8, 
CD&Y, Y))rl...i,,;il...i,l .-- gili, “.gi,li,(Y>. 

and 

71+1 
Q’(x, y, t) = p(x, y, t) 1 t”‘@,.(x, y). 

0 

Then (2’ is a Cm double form on w’ x W’ which satisfies, for Y(X, y) < 6, 

Q’ is the parametrix for the closed manifold TV’. It has the properties: 
For any continuous form f on W’, 

!z’(t).f = J,, c?‘(., YY t) A *f(Y) 

is a Cm form satisfying 

uniformly; 

Forf, =f(., t) Cl on W’ x [0, co), J: Q’(t - t’)fi, , dt’ is C2 on W’ for 
each t > 0, Cl as a function of t > 0, and 

The proofs reduce to fairly standard formulas for the heat kernel in 
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euclidean space if one uses geodesic coordinates. The details can be 
gained from [3, Chapter 11. 

Because of the last relation above, it follows that the kernel 

P’(t) = P’(., .) t) 

= Q’(t) + f$‘(t - t’) U,, dt’ (5.11) 

will satisfy the heat equation 

(A - &, P’(t) = 0 

if U, is C1 on IV’ x [0, co) and satisfies the integral equation 

u, = (A - &) g’(t) + j-1 (A - ;;) Q’(t - t) U,, dt’. 

The first property above of the parametrix shows that P’ is the funda- 
mental solution of (5.1) on IV’. Uniqueness of the fundamental solution 
follows by standard methods which we outline below. 

Because of the way we have constructed the parametrix, the integral 
equation for U, is quite easy to solve by iteration. In fact, if 

Ul” = (A - $1 Q’(t), 

Up+‘) = J‘t (d - &) Q’(t - t’) ujYL’ dt’, 

then use of geodesic coordinates and standard calculations in euclidean 
space shows that, because of (5. lo), each component of Ui”’ is dominated 
by a fixed multiple of ((mn)!)-l t m(n+z)-lk, with k given by (5.2). Hence 

gives us a solution of the integral equation. It is not hard to see that 
the kernel U, is a C2n double form on IV’ x IV’; in particular, the 
kernel P’(t) given by (5.11) satisfies the heat equation. 
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The fundamental solution is unique in the following sense. Suppose 
P’ and P” are kernels satisfying 

(3 - &j P’(~) = (A - &j P/J(~) == 0, 

I,‘? P’(t)f = lii P”(t)f -= f, 

for each continuous form f. Then applying Green’s theorem on the 
closed manifold w’, 

0 == 
i’ 

(LlP’(u,y, t’) A *P”(u, x, t - t’) - P’(u,y, t’) A *dP”(u, 5, t - t’)) 

= j ($ PYU, Y, t’) / 
A *P”(U, x, t - t’) $ P’(u, y, t’) A * g PM@, x, t - t’)) 

= ;7 j P’(u, y, f’) A *P”(U, X, t - t’). 

Integrating this equation over (0, t) yields 

0 = P’(x,y, t) - Pl(y, x, t), 

and taking P” = P’, 

P’(x,y, t) = P’(y, x, t) 

= Pn(x, y, 1). 

Uniqueness and the fact that d commutes with d and 6 show that 
P’(t) commutes with d and 6. 

Calculations of the type used in the proof of Theorem 8, Chapter 9 
of [3] can be applied to show that P’(t) is actually Cm on IV’ x W 
and to derive estimates of the form (5.4) for the derivatives. Here is 
an alternative proof using the special form of the parametrix. It follows 
from (5.10) and (5.11) that for x fixed in IV’, P’(x, y, t) is C2” in y 
for each t > 0, and satisfies estimates of the form (5.4) for derivatives 
in y up to order 2n. But uniqueness implies the semi-group property 
P’(t) = P’(t/2) P’(t/2), and so 

P’(~,~, t) =~= j P+, u, ti2) A *~+,y, t;2) 

= j P’(u, x, t/2) A *P’(u, y, t/2), 

from which we can derive estimates for derivatives in both variables. 
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Finally, (5.11) implies that P’(t) has a local asymptotic expansion 
of the form (5.5). 

We now turn to the construction of the fundamental solution P 
of the initial boundary-value problem (5.1), using the method of single 
layer potentials as in Chapter 5 of [3]. A single layer potential is given 
by the action of a kernel on a smooth form defined on the boundary 
of W, producing a form on W which satisfies the heat equation with 
vanishing initial data in the interior, and which has an identifiable 
discontinuity at the boundary. Thus the addition of such a potential 
to P’ will yield a kernel satisfying the boundary conditions 3.2 if the 
corresponding form on the boundary satisfies a suitable integral equation. 
Rather than writing down this integral equation, we find it more 
efficient simply to exhibit the solution which one obtains by iteration. 

LEMMA 5.12. Let P’ be the fundamental solution of the heat equation 
on the closed manifold W’ containing W. Set 

Q(“+l)(x,y, t) = - j:, dt’ jI(S$j’““‘(u,y, t - t’) A *P’(x, u, t’) 

+ Q(‘“)(u, y, t - t’) A *dP’(x, u, t’)) 

+ ji dt’ jM2 (P/(x, & t’) A *dp(?‘+, y, t ~ t’) 

+ SP’(x, 24, t’) A *pyu, y, t - t’)), 

for m = 0, I,..., where all operations in the integrand on the right are 
applied to the variable u. 

For y fixed in the interior of W, Qtm) is Cm in the interior of W and 
satisfies 

(Ll - $) pyx, y, t) = 0, 

9-T pyx, y, t) = 0, m 3 1. 

For m 3 1, Q(nl) satisfies the ‘yump relation” 

$p(Y~, Y, t) = Pv” , y, t) + HQ’“‘-I’(% , y, t))tan , 

p. qpyx, y, t) = spyxo ) y, t) + ~(Sp--lyXo , y, t))tan , 
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as x approaches the point x0 of M, along the interior normal to MI , while 

$F PZk Y, 9 = Qy*% , y, t) + ;(p”‘-“(xo , y, t)),,,, , 0 

!'F dp'yx, y, t) = d&'""(.2,, , y, t) + pp-"(s,, , y, qnorm , 
0 

fog normal approach to the point x0 of M, from within W. 
Finally, in a given coordinate system, the components of QcmJ fog m 3 1 

satisfy the estimates 

C”‘(r(m/2))- 1 ~~~,/%e-I.(D2(c)+D2(!/))/t~(~, y, t) 

(5.13) 

for 72 = 0, 1, 0 < t < t, ) where D(x) denotes the distance of the point x 
from the boundary MI u Mz of W, and where the constants C and c, 
as well as the generic constants in the de$nition (5.2) of k depend only 
on t, and the choice of the coordinate system. 

COROLLARY 5.14. The kernel P de$ned by 

Q, y, t) = f (-2)“’ pyx, y, t) 
,,r--O 

is the fundamental solution of the initial boundary-value problem (5.1), 
and has the properties stated in Proposition 5.3. 

Proof. Because of the estimate (5.13) the series defining P converges 
uniformly on W and is differentiable term by term. Thus application 
of the jump relation to each term shows that P satisfies the relative 
boundary conditions of Definition 3.2 on MI and the absolute boundary 
conditions on M, . The fact that each term Qcrn) satisfies the heat 
equation with vanishing initial data in the interior of W shows then 
that P is indeed the fundamental solution of (5.1). 

Because of the boundary conditions (3.2), we may apply Green’s 
theorem to prove that the fundamental solution P is unique and 
symmetric, just as was done previously for P’. As a corollary of 
uniqueness, we see that P’ commutes with d and 6 on 9. This yields 
the first statement of the second paragraph of 5.3, which can also be 
derived directly from the definition of Qtm). 
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A further corollary of uniqueness, as before, is the semigroup property 

P(X>Y> t) = j, PC x, u, t/2) A *qu, y, 4Q) 

=.i 
P(x, 24, t/2) A *qy, 24, t/2). 

W 

The estimate (5.13) implies (5.4) f or n = 0. But applying this to each 
factor in the integral on the right yields (5.4) for n = I as well. Although 
it becomes more difficult to obtain sharp estimates for higher derivatives, 
it is easy to prove by iteration of the semigroup property that AnP 
is dominated by a multiple of t-nk for each integer n. Applying Sobolev’s 
inequality, we see that P is Cm on W. 

The proof of (5.13) p roceeds, of course, by induction, and we will 
carry along an additional statement in the induction, namely, an estimate 
on the boundary for the components of Qtm) which actually occur 
in the integral defining Qtm-I-l) and their tangential derivatives up to 
order two. This will enable us to obtain the estimate (5.13) in the 
interior for Qcrn+l) and its first tangential derivatives. It will also imply 
that (5.13) (with n = 1) holds for dQcm+l) and 8Qtm+l), i.e., the com- 
ponents of these forms have the same bounds as the tangential derivatives. 
Since the derivative in the normal direction to the boundary can be 
expressed as a linear combination of d, 6 and the tangential derivatives, 
we will thus obtain (5.13) for all first derivatives. 

We will present the details of the calculations only for the second 
of the four terms in the formula for Q (m+l). For this term, the suitable 
induction hypothesis is as follows: Take a local chart (xl,..., x”) near 
the boundary M, as in the proof of Lemma 4.4, so that Mi = (xN)-‘(0) 
andgiN = gi, = 0 for i < N. Th enforxinMiandi, < N, 1 <CL < q, 

I(ata,n)n QliR71(j)(x, Y, t)l < c”’ tr (q))-’ t(m-n)/2e-cD”(r/)/tk(x, y, t) (5.15) 

for n = 0, 1, 2, 0 < t < t, , where atun = &.,,, u,J a/&@) denotes an 
arbitrary derivative in a direction tangent to the boundary. To start 
the induction, note that Q (O) = P’ satisfies (5.15) for m = 0, since 
D(y) is dominated by a multiple of Y(X, y). 

In estimating the first term of the formula for Qcrn+l) we would have 
to carry along an estimate like (5.15) for the components of 8Qcm), 
and their first tangential derivatives. We will see from the formula for 
SQ cmfl) given below that these can be obtained in exactly the same 
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way as (5.15). The terms involving integrals over IV2 are of course 
dual to the first two terms. 

The second term, which we will now consider, is given by 

e”“‘(U,y, t - t’) A *dP’(x, u, t’) :- jt &‘F(,qy, t’, t - t’), 
Ml 0 

where, in the coordinates we have chosen near A4r , F is given by 

The other terms can clearly be handled by similar methods. 
Consider first a term F’ in the form F which involves the components 

of dP’. We have the estimate 

\ (t’)-ll” k(x, u, t’), 
’ tk(x, u, t’), 

i, arbitrary, 
if i, < N, 1 :< p 2; q, 

since the factor QO in the definition of the parametrix on W’ vanishes 
at u = x under the second condition. 

The components of Q(m) which occur in the integral defining F are 
just those to which (5.15) applies. Hence we can use the properties 
of the euclidean heat kernel in R,“-l to obtain 

[ F;j);(j)(X, y, t’, t - t’)l < C”! p (?I+))-’ (t - t’)‘-“lyt’)-l k,(x, y, t), 

where 
k&y, y, t) z e-c(D2(2)+D2(i/)ltt1/1/Z(X, y, t). 

But we will use this bound only for t’ > t/2. When t’ < t/2, we can 
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integrate by parts in the integral defining F’, since only the components 
(a/%“)P for K < N are involved. Then using (5.15) with n = 1, we 
obtain 

IF{i);(j)(X,y, t’, t - t’)j < C”’ (r (qL,,’ (t - t’)“-qt’)-ll” k&x, y, t). 

Taken together, these two estimates form an integrable upper bound 
for F’ on 0 < t’ < t, and we see that the contribution of F’ to Qtm+l) 
satisfies (5.13) with n = 0 if the constant C has been chosen large 
enough (independently of m). 

Since (5.15) holds also for n = 2, we would like to apply the same 
techniques to obtain (5.13) f or n = 1. When t’ < t/2 after the first 
integration by parts performed above, the integral defining F’ will 
contain the factor 

& qx, u, t’) = 0 ($ & r2(x, 24)) p(x, 24, t’). 

But the geodesic distance clearly satisfies 

y2(x~ u, = C&j( 9 - d)(xj - d) + O(9), 

and since y2 is Cm on IV’ x IV’, we can differentiate this estimate to get 

& ++, u) + & y”(x, u) = o(r2(X, u)) 
and hence 

& P’(x, u, t’) + & P’(x, u, t’) 1 < qx, u, t’). 

Using this and then integrating by parts a second time, we gain the 
desired estimate. 

If i, < N, 1 < p < 9, we have 

1 &);(&, y, t’, t ~ t’)l 5g C” (r (“,j jj’ (t - t’)(~‘~--l)‘yt’)-ll2 k&c, y, t). 

Since 

s t o (t - q(?J~-1)/2(f-1/2 &' = p/2 B i * ; ' ) ;j, 

the contribution of F’ to Qtrn+l) satisfies (5.15) with n = 0. We are 
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dealing with smooth functions, and so we can differentiate the bound 
for (8/&&‘)P’ which yielded this estimate. Hence there is no difficulty 
in twice using the technique of the preceding paragraph and integrating 
by parts to obtain the estimate (5.15) with n = 1, 2 for these terms. 

Now consider the form F” which arises in F from the components 

of dP’. Differentiate the estimate 

Y”(X, u) = gNN(X)(XJ - zP)Z + I T; I g&)(x” ~ zP)(xj - u’) $- O(Y3) 
, \:i 

to get 

& Y”(X, u) = -2gNN(X) X‘” + W) 

for u in Mi , as in Lemma 3.4 of [2]. Since the principal term in 
(a/ &tv)P’ is 

I 

c &PC J x, u, t’) @“(X1 u) 

we have 

Therefore, 

and (5.13) for n = 0 follows from integration over 0 < t’ < t. If x is 
in M, , then xN = 0 and we get (5.15) for n = 0 just as before. And 
again, since differentiation of the estimate (5.16) is valid, we can obtain 
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the bounds (5.13) and (5.15) for the tangential derivatives by the same 
techniques as before. 

Thus we have derived (5.13) and (5.15) for the tangential derivatives 
of the term 

Q(m)(~, y, t ~ t’) A *dP’(x, u, t’), 
Ml 

and the same methods clearly give these estimates for the other terms 
in the formula for Qcrn+l). 

Before proceeding to estimate the normal derivative, we will prove 
the first of the four jump relations given in Lemma 5.12. This clearly 
arises from the term (5.16) of the kernel. Since k, < N for each of 
the indices k, ,..., k, in (5.16), the principal term of that estimate will 
vanish at u = x unless also i,, -C IV, 1 < p < N. Hence the normal 
component of Qtmfl) will be continuous as x approaches M, . When 
i, < N, 1 < p < q, if x is in Wand x,, is in M, , with xi = xoi, i < N, 
then 

Qj;;;,‘(x, y, t) - Q{T;;{(xo , y, t) = jt dt’ $ s ... j dul ... duN-’ \‘gF) 
0 

x ~l~~(j,(%y, f - f)p(x, u, t’) + O(1) 

as xn --f 0. Using the estimate for G(x, u) given above, one can calculate 

,:dt$i .j” y dul ... dzP1 dg( )p(x, u, t’) = 4 + O(1) 

as xn --f 0, while for each 6 > 0, 

s t &‘$ j . j dul . . . dzP1 2/g(u)& u, t’) = O(1). 
0 T(xo,U)+t’.~G 

Since Qtrn) is continuous in the pair (u, t), these estimates combine to 
give the jump relation 

when i, < N, 1 < TV < q. Note that the third of the jump relations 
is just the dual statement to this. 
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In the interior of IV, the formula for Q(m+l) can be differentiated to 
obtain 

SQ (7)l’-1)(x, y, t) = - j’ dr’ j, SQ(J)i)(u, y, t - t’) A *dP’(x, u, t’) 
0 

$- j;, dt’ j,\, (SdP’(x, u, t’) A *Q(“‘)(u, y, t - t’) 

+ dP’(x, u, t’) A *dQ(“‘yu, y, t ~ t’)), 

dQ(‘rz+l)(.~, y, t) = - j;, dt’ j,, (SQ’““(u, y, t - t’) A *SP’(r, u, t’) 
1 

$- Q)‘““(U, y, t - f’) A *dsP’(x, 24, t’) 

+ j: dt’ j,,: W’(x, u, t’) A *dQ(“‘)(u, y, t - t’), 

where again all operations in the integrands on the right apply to the 
variable U. We see at once from this that 8Q(lnL1) and dQ(m+~l) satisfy 
the second and fourth jump relations, respectively. 

A further immediate consequence of these formulas is the bound 
(5.13), with n = 1, for 8QQcm+i) near the boundary n/r, and for dQ(“l+l) 
near the boundary M, . But to gain these bounds near the opposite 
boundaries we will have to transform the formula for Q(” t l) by an 
application of Green’s theorem. 

Proceeding by induction, suppose that dQ(‘“) and 60”“) have the 
bounds (5.13), rz = 1, and, moreover, have limits at the b”oundary of IV. 
This is certainly the case for m = 0. Let Q:“’ = Qtm) if m > 0, 
Qi”’ = 0. Then using the fact that Qcm) satisfies the heat equation, 
with zero initial data when m > 0, 

Qp’(x, y, t) = -j; dt’ $ j,. Q(‘“)(u, y, t ~ t’) A *P’(x, u, t’) 1 =J s dt’ (AQ’““(u,y, t - t’) A *P’(x, u, t’) 

” Q(“i)(:, y, t - t’) A *AP (x, u, t’)) t ==s s dt’ lim@P’(x, u, t’) A *Q(lJf)(u,y, f - t’) 
cl ?W 

+ P’(s, u, t’) A *dQ(nr)(u, y, t - t’) 

- SQ’““(u, y, t - t’) A *P’(x, u, t’) 

- Q(“)(u, y, t - t’) A *dP’(.r, u, t’)). 
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Taking the jump relations into account, the right side becomes 

gp(x, y, t) = Q(‘“+l)(x, y, t) + gp’(x, y, t) 

t jt dt’ J^,,, (SI+, u, t’) A *lim Q(“‘)(u, y, t - t’) 
0 

+ P’(w, U, t’) A *limdp(m)(u,y, t - t’)) 

.t 
-I i dt’ (lim S$J(llf)(~, y, t - t’) A *P’(x, u, t’) 

0 .+f2 

+ lim&(lI1)(qy, t - t’) A *dP’(x, u, t’)). 

Differentiating this yields formulas for dQtm+l) and SQorl+l) which give 
the bounds (5.13), n = 1, near MI and M, , respectively, and show 
also that the hypothesized limits exist. We might remark that (with a 
little more manipulation) the above shows that in fact Q(I~~)(x, y, t) = 
Qtm)( y, x, t) and dsQ(“)(x, y, t) = SIJQ(m)(~, y, t) in the interior of W. 

As observed at the start of the proof, the bounds for dQtm), SQcn8), 
and the tangential derivatives of Qtrn) imply the bounds (5.13) for the 
normal derivative as well. Hence we have completed the proof of 
Lemma 5.12, and, because of Corollary 5.14, of the Proposition 5.3 
as well. 

6. VARIATION OF THE HEAT KERNEL 

In this section we will examine the behavior of the fundamental 
solution of (5. I) as the metric changes on W, the result being the 
following. 

PROPOSITION 6.1. Suppose given a family of metrics on W, indexed 
smoothly by a real parameter (T. Suppose that for each metric in the family, 
the normal direction to the boundary of W is the same. 

For each value of the parameter o, let A(o) be the Laplacian for the 
corresponding metric, and let P, be the fundamental solution of the initial 
value problem (5. I) for this metric. 

Then PO(t) d p d d;fS e en s z erentiably on the parameter CJ for each t > 0, and 

& Tr P,(t) = --t Tr((Sad - daS - aSd + ads) P,(t)), 
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where CY = x--I *, i being the dericatire with respect to CT of the algebraic 
operator * on forms. 

Remark. For closed manifolds, (d/da) Tr I’,,(t) = t Tr(d(o) PC(t)). 
The above formula does not reduce to this in general, the reason being 
that I’, commutes with d and 6 only on the space “r(W, 0), which 
is not invariant under CL 

Proof. Let u, 0’ be two values of the parameter of the family of 
metrics. For operations defined in terms of a metric on W, we will 
indicate which of 0 or (5’ is involved by the absence or presence of a 
prime, e.g., Ll = d(o), d’ = A(,‘). U n ess 1 indicated otherwise by a 
subscript, all operations act on the variable ZL of the double forms below. 

!Ve will make use of the identity 

Now, to start the proof, write 

J:, dtf f (AP(~, u, tf) A *P’(~, y, t - tt) - p(x, u, tt) A *Arpt(u, y, t - tf)) 
OF+ 

.* -- 

=! dl’$ j P(x, u, t’) A *fyL, y, t - t’) 
0 w 

-= fi’t: J, (*‘)-I *qx, u, 1’) A *‘P’(u, y, t - t’) 

- lim 
s I’+0 p+, 

P(X, IL, t’) A *P’(U,y, t - t’) 

= (“‘)yyl *gyx, y, t) - P’(‘Y, y, t). 

Nest, put A = -8d - d6, A’ = -8’d - dS’, and apply Green’s 
formula 

SW, df A *g = j-,,,f A *% + J;,,;f A *c%‘> 
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using the identity given at the start to handle the term 6’d. The result is 

(*‘),’ *yqx, y, t) - f+, Y, t) t 
=.i i’ dt’ 

0 
w {-dP(x, u, t’) A *dP’(u, y, t - t’) 

- sqx, 24, t’) A *sP’(u, y, t - t’) 

+ d((*‘)-l *P(x, u, t’)) A *dP’(u, y, t - t’) 

+ SP(x, 24, t’) A *s’P’(u,y, t - t’)} 

+ jt dt’ j,, {P’(% Y, t - t’) A *dP(x, u, t’) 
0 

- SP(x, u, t’) A *P’(u, y, t ~ t’) 

- (*‘)-I *f’(x, u, t’) A *‘dP’(u, y, t ~ t’) 

+ s’P’(U,y, t - t’) A *P(X, 24, t’)}. 

Since P and P’ satisfy the relative boundary conditions on Mi and 
the absolute boundary conditions on M, in their respective metrics, 
the first and last terms in the integral over 8IV = Ml u M, vanish. 
The second term vanishes on M1 and the third on M2 . But the normal 
direction to the boundary is the same in each metric. Hence (see the 
remark at the start of the proof of Lemma 5.12) there are coordinates 
(Xl,..., x”) near a point of the boundary Mk such that M,< = (a?“-l(O), 
while on Mk , gi, = gIN = 0, i < N. Therefore on Mz , P,‘,opll, = 0 
implies ( *P’)tnn = 0, while on M, , P,,, = 0 implies ((x’)-l *P)tan = 0. 
So these terms also disappear, and after a little rearranging 

(*‘),’ *rqX,Y, t) - fyX,Y, t) 
t 

=s J 
dt’ . { -dP(x, u, t’) A (* - *‘) dP’(u, y, t - t’) 

0 W 

+ d(( *‘)-l( * - *‘) P(x, u, t’)) A *‘dP’(u, y, t - t’) 

- s&Y, U, t’) A* (6 - 6’) p;(U,y, t - t’)}. (6.2) 

In a local coordinate system, the operator * - *’ is represented by a 
matrix; since the metric depends smoothly on the parameter u, we 
may write 

* ~ *’ = (u - 0’) A(o, u’), 
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where A is represented by a bounded matrix satisfying 

lim A(a, a’) = “(~7) 
o”o. 

uniformly on W. We have the estimate (5.4) for each of dP and dP’ 
and applying the standard calculations for the heat kernel in euclidean 
space, we see that each component of the first term of the volume integral 
above is bounded by a fixed multiple of (u - a’)(t’(t - t’))-1’2. Hence 
the contribution of the first term to the right side is O(a - cr’). 

The derivatives of the matrix A in a fixed local coordinate system 
on W are likewise bounded and continuous in u’. Hence the estimate 
(5.4) can be applied also to the terms which involve 

d((*‘)-l(* - *‘) P) =z (a - 0’) d((*‘)-1 AP), 

(6 - 6’) P = (u - o’)(A *-I S + S(*‘)-1 A) P. 

We see that their contribution to the right side is also O(a - 0’). 
Applying the bounded operator *y’ to both sides of (6.2), we see 

that *P - *‘P’ is O(u - a’) uniformly on W. In particular, P’ = P,, 
is continuous in CT’, uniformly on W, and we can use this fact and the 
uniform continuity of A and its derivatives to obtain 

f (*v(u) P&l Y, t) = 22 (0 - u’)-Y*v P(T Y, t) - *r,’ P’(% Y, t)) 

L 

=s .r 
dt’ 

0 

~ *a{-dP(.x, u, t’) A idP(u, y, t - t’) 

$- d(*--l G P(x, u, t’)) A *dP(u, y, t - t’) 

- SP(x, u, t’) A *G *-’ SP(u,y, t - t’) 

- SP(x, u, t’) A “S(*-1 t P(u,y, t - t’))]. 

We see that (d/du) * P satisfies the same estimate (5.4) as does P. 
But now we can again apply Green’s formula, taking care that the 
boundary conditions are satisfied, to rewrite the volume integral above: 

$ (*,(u) P&Y, y, t)) = s: dt’ j-, *,(-P(x, u, t’) A *S w1 i dP(u, y, t - t’) 

f *-l G P(x, u, t’) A *SdP(u, y, t - t’) 
- P(x, u, t’) A *d + *-l SP(u, y, t - t’) 

- *-I t P(u, y, t - t’) A dSP(x, u, t’)}. 
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We can further transform this expression by using 

s 
*-l&f A *g = s g A *f w W 

d * 
=-J gA*J 

da w 

and 

0 = g (*-1 *) 

= (-1)4(N--rl) $ (* *) 

The result is, finally, 

Ez2 & *-1 + *-1 g 

$ (*,(u) PO@, y, t)) = - j; dt’ j, c,{P(x, u, t’) A *SadP(u, y, t - t’) 

- P(x, u, t’) A *aSdP(u, y, t - t’) 

- P(x, u, t’) A *d&‘(u, y, t - t’) 

+ P(u, y, t - t’) A *adSP(x, u, t’)} 

t 

=-I J 
dt’ (Sold - cxSd - da6 + ads), 

0 W 

x qx, u, t’) A *u ** P(% y, t - t’)>ltk,, 

+ jt dt’ j {(” dS), - (” dS), 
0 W 

x P(x, u, t’) A *u *, P(u, y, t - t’)}lv=, . (6.3) 

The operation of integrating the exterior product of two forms 
over W does not, of course, depend on the metric. Since the trace 
of PO(t) is given by the integral of the exterior product with itself of the 



RIEMANNIAN MANIFOLDS 199 

double form x1/ P,(x, y, t), taken at y = X, we obtain (d/da) Tr R”(t) 
by applying the latter operation to (6.3). Having done so, we can 
interchange the order of integration on the right, and integrate with 
respect to x before applying d and 6 on the variables u and ‘u. But then 
each of the integrals with respect to x reduces to 

i 
P(x, 21, t’) A *s P(u, x, t - t’) = P(u, 71, t). 

w 

Hence (d/da) Tr PO(t) is g iven by the integral over W of the exterior 
product with itself of 

-t(&d - cdd ~ da6 + a&), P(u, v, t) f t((” d6), ~ (C d6),, P(u, 0, t), 

taken at ~1 = U. Since this operation is the trace, and since the second term 
above vanishes at u = U, we get the desired formula for (d/do) Tr R*(t). 

We will apply Proposition 6.1 in the next section to examine the 
behavior of the analytic torsion as u vanishes. We will also want to 
consider the behavior of the R-torsion defined in Section 3. For this 
we will have to compare orthonormal bases for the spaces of harmonic 
forms for the two different metrics. The result we will want is the 
following. 

PROPOSITION 6.4. Suppose, as before, that we have a smoothly param- 
eterized family of metrics on W, for each of which the normal direction 
to the boundary of W is the same. 

For each value o of the parameter, let Hi be the space of forms which 
are harmonic in the corresponding metric, and which satisfy the relative 
boundary conditions of 3.2 on AI, and the absolute boundary conditions 
on M, . For each o there is an orthonormal base (h,(o)) of CPO such that 
for each j hj( ) a is a drflerentiable function of o, hi = (d/da)hj is in 59, and 

(hj ) I;,) = @zj ) CA,), (6.5) 

where as before 01 = *pl &. 

Proof. Let f be a smooth form on W which satisfies fb,, = 0 on il4i , 
f norm = 0 on M, . These boundary conditions are independent of the 
choice of the metric within our family, since the normal direction to 
the boundary is the same for each metric. Moreover, we saw in the 
proof of Proposition 6.1 that for each u, af satisfies the same boundary 
conditions. 

60717/2-S 
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We can therefore apply the Hodge decomposition of Corollary 5.7 
to af: 

Define 

Fo(f) = -dg, - &h. 

The form F,(f) so defined satisfies 

By (5.9), F, is a bounded operator on the space H,,(W, 0), which 
is clearly independent of U. This means that we can apply the Picard 
iteration method to solve the differential equation 

in H,(W, 0), with initial value h(O) in X0 at u = 0. The solution h(o) 
is, of course, independent of m, and since m is arbitrary h(a) is C”O 
on W for each U. 

Writing 

h(o) = h(0) + j%,(h(o’)) da’ 
0 

shows that &z(o) = 0. W e will show that for g satisfying g,,, = 0 on MI 
and gnorm = 0 on M, , we also have (h(a), dg) = 0; by Corollary 5.7, 
this will imply that h(a) is in Cc0 . 

To see this, write 

$ (44 44 = $ j-, 44 * *dg 

= ($ h(U), 4) + (h(u), 49 
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But 

($ h(u), clg) = (F#44), &I 

-y &EbM4), g) 

=-= -(S,wJz(u), g) 

= -(/z(a), a, dg). 

Hence (h(a), dg) is constant, and since h(0) is in <To, (h(a), dg) = 0 
for all 0. 

Now let (h,(O)) b e an orthonormal base of X0, and let h,(u) be the 
solution of our differential equation with initial value h,(O). Since 

(h,(u)) is orthonormal in ZU , and, of course, is a base since 

dim X0 = dim A?,, . 

Equation (6.5) comes from setting K = j in the second line above. 

7. VARIATION OF THE TORSION 

Let W be a manifold with boundary as described in Section 3, and 
0 a representation of the fundamental group rri( W) by orthogonal 
matrices. Let P,(t) be the fundamental solution of the initial value 
problem (5.1) for forms in 9( W, 0). 

We want to define the analytic torsion for W as in 1.6, but we do 
not want to assume that the homology of W with coefficients in E(0) 
is trivial. So we must alter the Definition (1.5) of the zeta function. 
It is clear from the spectral representation of P&t) that 

H, = p-i P,(t) 
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is the orthogonal projection operator onto the space S&Q of harmonic 
p-forms in S@, and that 

TV,(t) - 4) 

decreases exponentially as t --f CO. Hence 

1 cc 
Lo(s) = qq J 

t”-l Tr(P,(t) - H,) dt (7.1) ,, 

defines an analytic function of s for Re s sufficiently large. It is known 
[17] as in the case of a closed manifold, that <,,, has a meromorphic 
extension which is analytic at s = 0. 

DEFINITION 7.2. The analytic torsion T,(O) of the Riemannian 
manifold IV with boundary is the positive real root of 

log T,(O) = g g (--1)“d;,o(o). 
u=o 

We will investigate the change in T,(O) as the metric varies on IV, 
leaving the normal direction to the boundary the same. The method 
is the same as that of the proof of Theorem 2.1, but we no longer have 
the asymptotic expansion (5.6) which showed that &JO) = 0 for 
closed manifolds. We are therefore forced to consider instead of T,(O), 
the quotient T,(O)/T,(O’) f or t wo representations 0, 0’ of 7rr(W). 

THEOREM 7.3. Let 0, 0’ be representations of the fundamental group 
rI( W) such that the homology of W with coeficients in E(0) and E(0’) 
is the same. Suppose a family of metrics on W, parameterized by u, for 
which the normal direction to the boundary is the same. Then 

$ log(T,(O)/T,(O’)) = 8 t (-I)* Tr(ol(H, - H,‘)), 
44 

where H, and H,’ are the projections onto the spaces yt”, , yt”,’ of harmonic 
forms in B( W, 0) and B( W, 0’), respectively. Recall that 01 is the 
algebraic operator *-I t. 

Proof. Note that the assumption about the homology of W implies 
that, for each choice of u, 

Tr H, = Tr H,’ 
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and that 

1 Tr I’,(t) - Tr P,‘(t)1 < @, t 3 1, 

for some c > 0, where, of course, P, and P,’ are the heat kernels for 
the spaces %*(I&‘, 0) and C@( W, 0’), respectively. 

Let x be a point of W; we can assume that the neighborhood 
Cis = ( y : Y~(x, y) < S} of x is simply connected, where Y is the 
geodesic distance on W. Being a local operator, the Laplacian is the 
same on sections of 9( W, 0) and S( W, 0’) over Us . This means that 
we can apply Green’s formula as in the proof of Proposition 6.1 to 
obtain 

P&G Y, t) - Ps'(x, Y, t) = j; dt' jT2,, uj=6Pq'(u, Y, t - t') A *dP,(x, u, t') 

- SP,(x, 24, t’) A *P,‘(u, y, t - t’) 

- P&Y, u, t’) A *dP,‘(u, y, t - t’) 

+ SP,(u, y, t - t’) A *P(x, u, t’)}. (7.4) 

Because of the boundary conditions, this holds whether or not the 
boundary of W intersects U, . Using the estimates (5.4), we have then 

Hence 

1 Tr P,(t) - Tr P,‘(t)/ < Kt--N4-clt, t < 1. 

1 w 
LA) - L’b(s) = r(~) s ts-l Tr(P,(t) - P,‘(t)) dt ,) 

has the analytic extension in the s-plane given by the right side above, and 

log(T,(O)/T,(O’)) = 3 5 (-l)* q jr Tr(P,(t) - P,‘(t)) $ . 
rl=O 

(7.5) 

Because of (7.4), we can differentiate under the integral sign on (7.5) 
with respect to the parameter u. Proposition 6.1 gives 

= +)uY jr Tr((aSd - ads + do16 - Sad)(P&t) - P,‘(t))) dt. 

One must now take care in permuting the operators above, since 01 
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does not leave the spaces 5% invariant. However, we can see by an 
application of Green’s theorem that 

Tr(dorGP,(t)) = Tr(olGP,(t) d) 

= Tr(iuSdP,-i(t)), 

Tr(Gc&‘,(t)) = Tr(oidSP,+,(t)). 

Hence, as in the proof of Theorem 2.1, 

2 $ log(TdO)/ TdO’)) = i (- 1)” 1: 2 Tr(@‘,(t) - p,‘(t))) dt 
‘1=0 

In 3.6 we defined the R-torsion for a triangulation K of IV, and in 
Theorem 4, we showed that this R-torsion depends only on the manifold 
W and its Riemannian structure. We will now examine the behavior 
of the R-torsion as the metric varies. 

THEOREM 7.6. Suppose as before a family of metrics on W with the 
real parameter G, for each of which the normal direction to the boundary 
is the same. Then the R-torsion rw of Dejinition 3.6 satis$es 

$ log ~~(0) = g 5 (-l)q Tr(olH,), 
q=0 

for each representation 0 of 7rl( W), where H, is the projection operator 
onto the space of harmonic forms in %( W, 0), and 01 = *-l t. 

Proof. Let K be a smooth triangulation of W, with subcomplexes 
L, , L, triangulating the boundary manifolds il!li and Ma, so that 
Tw = TK,L, . We assume K fixed; then TV depends on the metric only 
through the choice of a preferred base of the homology groups as the 
image of an orthonormal base of harmonic forms. 

In computing 7&O), we can choose a base for the boundaries 
B,(K, L, ; 0) = X’,+,(K, L, ; 0) arbitrarilv. so we proceed as follows. 
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For each q, pick a base bQ = (b,Q) of the space of coboundaries 
B*(K, L, ; 0) = a*Cq-l(K, L, ; 0), independently of the metric. For 
each by+‘, pick an element &’ of C*(K, L, ; 0) such that a*by+’ = bjQ+‘, 
again making the choice independent of CT. Finally, for each 0, let 
hq = (hj”) be an orthonormal base of harmonic q-forms in the space 
.9* IV, 0) in the corresponding metric. Then (!I,“, @+I, Aq(h,~)) is a ( 
base for 0(K, L, ; 0). 

Let 5 = ((J be an orthonormal base of I?“!; 4, together with the cells e 
of the triangulation, determines a preferred base of Cq(K, L, ; 0). 
Let D be the matrix of the change from this to the base constructed 
above, so that 

Dq = (Ku , b,a(e)), (E, , JP+l(e)), s, (f,, , V)j, 
where e runs through the q-simplexes of K - L, . 

Consider the base of C&K, L, ; 0) which is dual to this. Part of 
this base consists of elements b,’ of C,z satisfying 

(6(/i, b,“) = 0, 

(b,i, lP(h,“)) = 0. 

These elements form a base for the boundaries I?, = X2,+, . 
Another part of the dual base consists of elements e-1 of C, satisfying 

(6‘6-1 , b,“) = S,j ) 

{& ) Ry+l) := 0, 

&, ) A4(Rja)) = 0. 

For each such element, &-, = b& . 
Finally, since 

(A&,“), A’qtlp)) = sij ) 

(A (hi) b.4) = 0, 0 2 T , 

the remaining members of the dual base are just the elements 

where 

(cqi, 6y-l) = -(A&hi”), 6,4-l). 
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and hi' = Q$‘&, then one has $i @ $a f--) h,’ @ h,’ in the sense of (26) 
and (27), i.e., 

vh’ 0 h,‘)(%) = 17z’(-u, O)($, 0$,)(4. (42) 

To prove (42), we first assume that h,’ = Qz’yJ E &‘(A) for some A, 
&‘(A) denoting the subspace of 3:,’ corresponding to &,(A) under the 
isomorphism 5,’ g s,* . Then, in view of (21), (21’) and (34), the 
left side of (42) can be transformed as follows: 

(h,’ 0 h,‘)(u,) = y;* J‘,.,. h,‘(w) K,*(U,* - w*, 0)-l KZ’(UZ - w, w) 

X 
ij qz*(u, * - w* - al) &(q) dv, 

i 
d,w 

“1 

= ~d(~, 0) j,( j,,.+ KZt(W*, 0)-mz7-'1) h,'(W) 

X KZ’(W, w)-1 d,w &(ul - q) E((z+ - ;ul, uz))-’ dv, 1 

which proves (42) f or h,’ E g,‘(h). This computation is legitimated by 
the absolute convergence of the double integral on the second line, 
which follows from the fact that the function 

@d%) = j,+ I %dw*, W I qz*(w* - %)I I ~‘c~)I dw, w)kl dzw 

belongs to L,( I’,) ( see 10). It follows from (42) and from what we have 
proved in 9 that for h,’ E g,‘(h) and h,’ E 3,’ one has h,’ @ h,’ E g!,’ and 

II Al’ 0 h,’ 11: = II 41 II . II 42 II = II 4’ 11; . II 4’ IIQ . (43) 

Next, to prove (42) in the general case, let h,’ be any element of &,’ 
and let {hi”} be a sequence in &‘(A) such that limU+% hi, = h,‘. Then 
by (43), {hi, 0 &‘I is a Cauchy sequence in Q!,‘, so that it has a limit. 
But, by (41), one has limV(hiV @ h,‘)(w) = (h,’ @ h,‘)(w) for all w E IV+ . 
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Therefore, one has h,’ @ ha’ = lim,(h;, @ h,‘) E 5&’ and 

(for all u E V), which completes the proof of (42). The last assertion of 
the Theorem is obvious. 

Now, let (&) b e an orthonormal basis of 5,‘. Then every element f’ 
in I’,’ can be expressed uniquely in the form 

with h,’ E 3,‘. Then one obtains the following 

COROLLARY. One has 

h,'(w) = j,.+ &(W')f'(W + W') K~'(w + W’, W’)-’ d,w’. (44) 

Proof. Put e,‘(w’) = K~‘(w’, w). Then e,’ E 5,’ and for any h' E 5,' 
one has h’(w) = (e,‘, h’). Therefore one has 

where 
h,‘(w) = (e,,‘, A”‘) = WY 0 e,,;‘,f’), 

(I& @ e,‘)(w’) = jw+ &(w”) K*‘(w, w’ - w”) K~‘(w’ - w“, w”) dzw” 

= K,‘(W, w’) 
s 

&(w”) K,‘(w’ - w - w”, w”) dzw” 
w + 

Thus one has 

= K,‘(W, W’) &(w’ - w). 

KZ’(W, W’) &(W’ - W) f ‘(W’) KZ’(W’, W’)-’ dzw‘ 

= jwimf’(m’ + w) K,I(W’ + w, w’)p’ d,w’. QED. 
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A section of E(0) can be identified with a mapping f from m into 
Rn which satisfies f 0 g = 0( g)f, for g in 7~r( IV). But for such a map 
f 0 Y satisfies 

Hence the restriction off to IV,, is a section of the bundle E(0,); and 
the space a( IF,, , 0,) can be identified with the space of restrictions 
to IV, of forms in g( IV, 0) which satisfy the boundary conditions 3.2 
on MU = y-l(u). 

There is, of course, a similar identification of the chain complex 
C(K, ; 0,) with C(K,, ; 0), if K is a triangulation of IV which contains 
a triangulation KU of IF, as a subcomplex. 

To prove Corollary 7.8, let X be the vector field dual to dy in the 
metric of IV. If the interval [U r , ua] contains no critical points, then 
X determines a differomorphism F, of IV, onto W,,l for ur < u < ua , 
as in Section 3 of [9]. H ence we can identify W,, with IVU, equipped 
with a new metric. Since X is normal to M,, = v-‘(u), the normal 
direction to I%‘, = v-l(ur) will be the same for each of the two metrics. 

Hence we need only verify that the homology of W, with coefficients 
in E(0) and E( 0’) is the same. Then, because of the identification 
indicated in the remark above, we can apply Corollary 7.7. 

It is clearly sufficient to make this verification only for u = m + i, 
m = 0, l,..., N. We can assume a triangulation K of W, which for 
each m contains a triangulation K,, of WnLcl,z as a subcomplex. The 
inclusion K,,,-r C K,, determines the exact sequence of homology groups 

But (see Lemma 9.2 of [lo]) H,(KN1 , K,-, ; 0) is zero for 4 + m, 
and is isomorphic for q = m to the tensor product of Rn and a free 
abelian group with one generator for each critical point of index m, In 
particular, H,,(&, , K,-, ; 0) can be identified with H,,(K,,, , K,,-, ; 0’). 

Thus we have, from the homology exact sequence, 

4 -c m, 
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by the hypothesis of Corollary 7.8. Also 

and 
ff,(Kn ; 0) - K&l ; 0) = 0, q > m, 

But the last isomorphism holds also when 0 is replaced by 0’, and 
we have seen that the two left sides can be identified for each m. Hence 
by induction on m, 

Since we have seen that we can also identify H,(K,, ; 0) with 

fwL ; OnA/2 P ) the hypothesis of Corollary 7.7 is satisfied and 
Corollary 7.8 follows. 
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