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INTRODUCTION

Let W be a compact oriented Riemannian manifold of dimension N,
and let K be a simplicial complex which is a smooth triangulation of .
The Reidemeister—Franz torsion (or R-torsion) 7 of K is a function
of certain representations of the fundamental group of K. Since it is a
combinatorial invariant, and since smooth triangulations of W are
equivalent, this torsion is a manifold invariant.

We raise the question as to how to describe this manifold invariant
in analytic terms. Arnold Shapiro once suggested that there might be
a formula for the torsion in terms of the Laplacian 4 acting on differential
forms on W. Our candidate 7 involves the zeta function for appropriate
Laplacians. Though we have been unable to prove that 7' — 7, we
show in this paper that 7 is a manifold invariant and present some
evidence that T = .

If one thinks of analytic torsion as an invariant associated to the De
Rham complex, it is natural to ask whether there are analogous invariants
for other elliptic complexes. For complex manifolds and the ¢-complex,
there is indeed such a holomorphic invariant, which will be the subject
of a subsequent paper.

In Section 1 we give a short exposition of Reidemeister—Franz torsion
and motivate our definition of the analytic torsion 7. In Section 2 are
collected the main results of the paper. First we prove that 7' = T,
is independent of the metric of W, for W closed. Next we prove three
results which are formal analogs of known properties of the Reidemeister—
Franz torsion, namely, 7 = 1 if W is closed and has even dimension;
Ty ww, = (Tw "), x(W,) being the Euler characteristic of W,, if
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146 RAY AND SINGER

W, is simply connected; and, finally, if W; and W, have the same
universal covering manifold and if the fundamental group = (W;) of
W, is a subgroup of that of W, , then T, = TW2 o U, where U carries
a representation of = (W)) into the induced representation of =, (W,).

We also describe in Section 2 a possible method of proof that T, /7y,
is constant on the representations of m (W) for which the torsion is
defined. Part of this program involves extending the definition of
torsion to the case of Riemannian manifolds with boundary and with
nontrivial homology. This is done in Section 3. To define 7 in this
case we must choose a base for the homology classes of W, which we
get by the Hodge theorem from an orthonormal base of harmonic forms.

In Section 4 we present the de Rham-Hodge theory for manifolds
with boundary, and prove that the combinatorial torsion defined in
Section 3 is invariant under subdivision, hence independent of the
triangulation of W used to define it. At the heart of the proof is a
relation, proved by Kodaira [4] for closed manifolds, between duality
in the differential form setting and in the homology-cohomology setting.

In Section 5, some results about the heat equation are described,
including the Hodge theorem for manifolds with boundary. In Section 6
we compute the behavior of the trace of the heat kernel as the metric
changes.

Finally, in Section 7 we apply the results of the four preceding
sections to prove the following. Suppose a manifold W with boundary
is equipped with two metrics which determine the same normal direction
at the boundary. Suppose O, and O, are two representations of the
fundamental group m (W), for which the torsion is defined. Then the
differences log( 7'y (O;)/m4(0,)) — log(Tw(O,)[7w(0,)) are the same for

both metrics.

1. THE ANALYTIC TORSION

Let us begin with a description of Reidemeister-Franz torsion.
We will follow Milnor [10, Section 8] and in particular use his definition
of R-torsion, which differs from that of Reidemeister and Franz.

If V is a finite-dimensional vector space over the reals and if
v = (71 ..., ¥,) and w = (wy ,..., w,,) are two bases for V, let [w/v]
denote | determinant 7' |, where T is the matrix representing the change
of base from vto w:w;, = X t,7;.
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Suppose
C:Cy N Cyg—> "= C,—>C,

is a chain complex of finite real modules. As usual, let Z, denote the
kernel of ¢in C,, B, C Z, the image of C,_, under ¢, and H (C) = Z /B,
the g-th homology group of C.

Suppose we are given preferred bases ¢, for C, and h, for H (C)
for each ¢. Choose a base b, for B, for each ¢; let b, ; be an independent
set in C, such that @b, , = b, ,, and h, an independent set in Z,
representing the base h,. Then (b, , h,, b,_,) is a base for C,. Since,
clearly, [b, b, b, ,/c,] depends only on b,,h,, b, ;, we denote it

g Yg-1

by [bfl ? h(] ’ b(]*l/cq]'

Q7

DEerINITION 1.1. 7(C) is the positive real number defined by

N
log (C) ==} (—1)"log[b, , by, by_/c,)
=0
Remark. 1t is easy to see that 7(C) does not depend on the choice
of the bases b, for the B, : if b,’ is another choice, then

[b,, by, bga/c] = [b,/b,][b; 1/b, 4][b,, by, b, y/c],

and the first two factors on the right drop out in the formula for 7(C).

The R-torsion arises in the following context. Let K be a finite-cell
complex and K the simply connected covering space of K with the
fundamental group w, of K acting as deck transformations on K. Think
of K embedded as a fundamental domain in K, so that K is just the
set of translates of K under =, . In this way, the real chain groups
C/K) become modules over the real group algebra R(m;), with a
preferred base consisting of the cells of K.

Let e be a cell of K; its boundary ée in K will not in general be
contained in K, but will be a combination of translates of cells of K
by deck transformations. Hence relative to the preferred base, the
boundary operator on the R(m)-module C,(K) is a matrix with coeffi-
cients in K(m,).

Now let O be a representation of m,(K) by orthogonal n x n matrices.
We may think of O as making R" a right R(m)-module. Define the
chain complex C(K, O) by

C(K,0) = R" ® C/R). (1.2)

R(mry)

607/7/2-5



148 RAY AND SINGER

C/K, O) is a real vector space, and we can choose a preferred base
(%; ® e;), where x; runs through an orthogonal base of R” and ¢; through
the preferred base of C,(K) consisting of the cells of K.

DrerFiNITION 1.3, Let O be a representation of the fundamental
group m; by orthogonal matrices for which C(K, O) is acyclic. The
R-torsion 1s defined for such a representation by

7%(0) = 7(C(K, 0)),

where C(K, O) has the preferred base described above. (Since
H(C(K, O)) 1s assumed to be zero, no homology base occurs in the
definition of 7(C(K, 0)).)

Remark. The preferred base of C(K, O) depends on an arbitrary
embedding of K in the covering space K. A different choice of the
embedding, however, produces a new base related to the old one by
an elementary matrix whose entries are group elements. Since this
corresponds to a change of base in C(K, O) by an orthogonal matrix,
the R-torsion 75 is independent of this arbitrary choice. Similarly,
7x does not depend on the arbitrary choice of the orthonormal base x
of R*.

It is known [15; 10, Section 7] that 74 1s a combinatorial invariant
of K. Hence if W is a compact oriented manifold, any smooth triangula-
tion of W gives the same R-torsion, which we denote by 7 .

We will now define the analytic torsion. For the present, W will be
a compact oriented manifold without boundary, of dimension N.
Given a representation O of the fundamental group =,(W) by orthogonal
matrices, let E(O) be the associated vector bundle, and let ¥ = Y ¢
be the linear space of C® differential forms on W with values in E(O).
21 is the space of C® sections of the sheaf A7 Q) E(O), where A7 is the
de Rham sheaf. We have the usual exterior differential d : 29 — %9+,
with d* = 0.

Suppose that W has a Riemannian metric. This defines a duality
* 1 %% — N1 and provides 27 with an inner product

(he) =] 1r7

where A : {12 R E(O), A7 ® E(O)} — AP is the map determined by
the usual exterior product of differential forms and the inner product
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in E(O). With this inner product, % becomes a Hilbert space, and
8 = (—1)NetNHIXg* is the formal adjoint of d on 1.
The Laplacian

4 — —(5d + d8) (1.4)

is symmetric and negative-definite on &, and is known [7] to have a
pure point spectrum. We write 4, for the restriction of 4 to &

Suppose now that zero is not an eigenvalue of 4, corresponding by
the Hodge theorem to the assumption in Definition 1.3 that C(K, O)
is acyclic. Then the zeta function {, , of 4, on &7 is defined by

gq.O(s) - Z (7/\")—.@

I Y T
- 70 J“t Tr(e'“") dt (1.5)

for Re(s) large, the sum running over the eigenvalues A, of 4, . It is
known [16] that {, , extends to a meromorphic function of s which
is analytic at s = 0.

DeriNiTION 1.6. Let O be a representation of (W) by orthogonal
matrices such that 4 is strictly negative on Z(W, O). The analytic
torsion 7,(0) is defined for such a representation as the positive real
root of

N
log Ty (0) = & Y (—1)" 44;,0(0)-
q=0

This is our candidate for the analytic torsion, and we shall now
explain where the formula comes from.

First we note that the R-torsion of a smooth triangulation K of W
can be expressed in terms of determinants formed from the boundary
operator d on C(K, O), as follows. The choice of a preferred base for each
C, represents ¢ : C, — C,_; as a real matrix. Let 0* : C, — C,., be the
transpose matrix, and define the combinatorial Laplacian 4 : C, — C,

by
A — —(a%e + eo¥).

Let AY” be the matrix representing 4 on each C, - Under the assump-
tion that C(K, O) is acyclic, 4% is nonsingular for each g.
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PropostitioN 1.7. If the R-torsion 74(O) is defined for the representa-

tion O, then

N
1%M0=%Z (— 1) g log det(—A).

Proof. On each chain group C (K, O), the preferred base determines
an inner product in which the combinatorial Laplacian is a symmetric
and strictly negative matrix. Moreover, (since ¢2 = (), the subspace

B, = &(C,,,) of boundaries is invariant under 4”. Let b, = (b },...,

be an orthonormal base for B, consisting of eigenvectors of A}f’:
498, = —5o%b, = N, b,

Having chosen this base for each B, , set

EY%) N
o*b,_, , J=1,,7, 4,
q—1,7

by

so that 95’;#1 = b’ _, . Note that the vectors 52'171 are orthogonal, with

(a*bq 1> O*bjfl) - !

== ; .
/\qfl J /\(Ifl,j

b2y I* =

Hence, assuming C(K, O) acyclic,
N .
10g TK(O) = Z (‘l)q log[bq ’ bqfl/rcq]

=0

Ty—1

= Z (‘1)(1 log H ( ’\q 11) 172,
q=1
But the orthonormal base of C, consisting of b/, j = 1,..., 7,

(A =1, 7y, Clearly diagonalizes 4%, so that

Tq Tg-1

det(—4) = T (=) T (=%

1
This implies

logn( Aq_lmz (— 1y log det(—4;”),

k=q

and
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which transforms the above expression for log 74(O) into that given
in Proposition 1.7.

Next, observe that the determinant of the nonsingular matrix —4
can be expressed in terms of its zeta function

(¢)
q

£9) = Lo £ Te(e'dd”y di
! I'(s) /o

— Tr(—4)>

(¢)

Indeed, since for each eigenvalue A of 477,

LN = g (=N,

we have log det(—A4") = —{(0). Thus the formula for the analytic
torsion is a formal analog of that for the R-torsion. In view of the
relation between the complexes 2(W, O) and C(K, O) given by the
de Rham theorem, we are led to believe that the analytic torsion and
the R-torsion may in fact be equal.

2. SoME PROPERTIES OF THE ANALYTIC TORSION

In this section we prove four properties of the analytic torsion.
Three of these are formal analogs of known properties of the R-torsion,
and the proofs depend primarily on formal manipulations. The proof
of Theorem 2.1, on the other hand, requires some properties of the
heat kernel, given in Sections 5 and 6.

We also outline an argument which might prove that for two repre-
sentations O; and O, of = (W), Tyw(0,)/7w(0;) = Ty (0,)/rw(0,). The
remainder of the paper carries out part of this program.

Our first task in this section is to prove that the analytic torsion Ty
does not depend on the arbitrary choice of a Riemannian metric for .

THEOREM 2.1. Let W be a compact oriented manifold without boundary,
and let O be a representation of the fundamental group = (W) by orthogonal
matrices with the property that the cohomology with coefficients in the
associated vector bundle E(O) is trivial. Then T,(0) has the same value
for any choice of a Riemannian metric on W.
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Proof. We will prove in Theorem 2.3 that log Ty =0 when W
has even dimension. Since that proof does not make use of Theorem 2.1,
we may assume here that N = dim W is odd.

Suppose p, and p; are two Riemannian metrics on W. Set p, =
(1 — u)py + up;, and let A,(u) denote the Laplacian on Z4W, O)
formed with the metric p,. By the Hodge theorem, 4(u) is strictly
negative under the assumption that the cohomology of W with coefficients
in E(O) is trivial. Hence

N A
fs) =43 (=g 7 Tr(e) dr
q=0 0

defines a function of s for Re s sufficiently large, which as remarked
after (1.5) extends to a meromorphic function in the s-plane. According
to (1.5) and Definition 1.6, log Ty(0O) = f(u, 0) for the metric p,
on W, so we have to show that (&/du) f(u, 0) = 0.

By Proposition 6.1,

0 .
= Tr(etdq(u)) - Tr(etdq(u)Aq)

where 4, = add — Sad - dad — ddx, « being the algebraic operator
o = * Lk = x7Y0/ou x) on 2. Clearly,

Tr(e“"y < Ce ',  t=1,>0,

for C, € > 0 independent of « in [0, 1], so that we can differentiate
under the integral to get

4 1 d q z s tA,(u) 4
Gl W) = 1Y (1) g [ 4 Tr(e %A ) (22)

=0

=y

for Re s large. '
We now compute Tr(e'44 ). If 4 is of trace class and B is a bounded
operator, it is well known that Tr(AB) = Tr(BA). Hence
Tr(e"“0dd) = Tr(e*“waddet'“e)
= Tr(8de" %),
Tr(e“8ad) = Tr(de"*:8x),
Tr(e"do8) = Tr(Se"%edv).
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Since d4, = 4,,,d and 84, = 4, ,5, we have

Tr(e"d,) = Tr(e"“dda) — Tr(e'+1dsa)

+ Tr(e“8da) — Tr(e"“ddw).
Thus
AY

Y (=10 qTr(ed,) = Y (—1)""(Tr(e“8do) + Tr(e'“rdd))

q=0 q=0

— Z (—1) Tr(em‘ld,,oc)

=0

d 3 g g,
= S X (=1 Tr(e ).

q=0

Using this in (2.2),

€L

o N
o 1 1 siT 4, () dt
ol (09 =3 X (1) [ 1t T )

I

N Pl
15y (—n f 171 Tr(e' %) d.
=0 0

The last equality is obtained by integration by parts. The integrated
terms vanish for Re s large because Tr(e/qa) decreases exponentially
for large t and is O(t~V/?) for small ¢.

To complete the proof of Theorem 2.1 we need only show that
the meromorphic extension of the function

g, s) — f 171 Tr(e2) dt
0
has no pole at the origin.

This, however, follows for W of odd dimension by a straightforward
extension of the results of Minakshisundaram and Pleijel [11] (see (5.6);
Seeley [16] has proved a much broader generalization), namely, for
Re s large, (—4,)¢ is an integral operator with kernel

K (x, y) € hom(Z(y), Z*(x));

for each » in W, the map s — K(x, x) extends to a meromorphic
function in the s-plane, which vanishes at s = 0 when dim W is odd.
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Now (—4,)« has the kernel K(x, y)«(y) for Res large, and the
extension of K (x, x) ox) also vanishes at s = 0. Hence

Tr(—4y)7 %) = [ Tr(K (¥, %) o)

has a meromorphic extension vanishing at s = 0.
But standard calculations give

g(u, s) = fﬁ 171 Tr(e'"y) dt
= I'(s) Tr((—4y(w)~ o),

and so g(u, s) is regular at s = 0.
We next prove three properties of the analytic torsion which reflect
known properties of the R-torsion.

TrEOREM 2.3. Suppose W is an oriented compact manifold without
boundary, of even dimension. Then log T, (0) = 0. (That logr, =0
in this case is proved in [8].)

Proof. Let O be a representation of (W) by orthogonal matrices
for which the Laplacian 4 is strictly negative on Z(W, O). We will
show, using duality, that

Y. (1) glofs) = 0,

where {, , is the zeta function defined in (1.5).

Let A be an eigenvalue of 4, , and let £,(A) be the subspace of Z9(W, O)
consisting of the eigenforms belonging to A. We have assumed that
zero is not an eigenvalue, so we may define the two maps

A4/ = —A14s,
A = —\1ad,

on &(X). Since (d8)? = —dbdd, (8d)* = —8dd, A, and A, are orthogonal
projections of &(A) onto the two subspaces, respectively,

ézl(/\) = {qﬁ € gq()\)v d¢ = O}’
€, (X) = {p e (M), 8¢ = O}
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Moreover, the equation
b= ALAp = XN (dsp -+ 5df)

shows that &(}) is the direct sum of the subspaces &,(2), &,(A). Fmally,
the map (—A)"1/2d is an isometry of &, (A) onto f (), with inverse
(—A)~1%.

Let N,/(A) and N;(A) be the dimensions of the spaces &;'(A) and &(A).
Because of the above, the multiplicity of A is N, (A) = N, ’()\) = N, (N =
N,

,(A) + N, (). Hence we may write the zeta function of (1.5) as

cwmzzvﬂ”mm
= Y (NN, A) + N
= Y (NN N2,
yielding

S (1) gty ofs) = Z‘4VL(M‘ /) (2.4)

7=0 =1

Y (1Y (NN,

q=0

Finally, the duality operator * : ¢ — &N-1 satisfying *d5 = 8d*,
defines an isometry of &(}) onto &y ,(A). Hence N,/ (A) = Ny_»),
which upon substitution in (2.5) shows that

S (1) qlyofs) = 0

4=0

when N is even.

THEOREM 2.5. Suppose W, and W, are oriented compact manifolds
without boundary, and suppose W, is simply connected. Then the analvtic
torsion of the product manifold W, < W, is given by

log Ty, = x(Wy) log Ty, .
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where y(W,) is the Euler characteristic of W,. (See [5] for the corre-
sponding result for R-torsion.)

Proof. By Theorem 2.1, we are free to choose the metrics arbitrarily
on the three manifolds. So we can assume that W, X W, has the product
metric of those of W, and W, .

Let O be a representation of the fundamental group = (W, x W,)
by orthogonal matrices. Since = (W, X W,) = = (W,), the associated
vector bundle E(O, W, x W,) is the same as the vector bundle E(O, W)
lifted to W, x W, via the projection map of W; x W, onto W, .

Suppose f, € Z?(W,, O) and f, € 29 W,), the latter space consisting
of real-valued C® forms on W,. Let f; @ f, be the wedge product
of f, and f,, lifted to W, x W, . Such forms, for p + ¢ =, span
9"(W, x W,, O). Clearly

d(fr @f) = ) @ f: + (=1)"/, © (dfa),

and, since the metric on W, X W, is the product,

A @) = @f) @fe + (=D i ® (3f)-

Using these in the definition of the Laplacian 4 = —d§ — &4,

A(fl ®f2) = (Afl) ®f2 +f1 & (Afz)-

Hence if f; and f, are eigenforms of the Laplacian, with eigenvalues
Ay and A, , then f; & f, is an eigenform with eigenvalue A; 4 A, . Since
the forms f; ® f, span (W, x W, , O), all eigenforms of the Laplacian
on Z(W; x W,, O) are obtained in this way.

Suppose now that for each g, zero is not an eigenvalue of the Laplacian
on ZYW,, O). Then the same is true of YW, x W,, O), and Ty (O)
and Ty w (O) are both defined. Let N, (A, W;) and N (u, W,) denote,
respectively, the multiplicities of the eigenvalues A and pu of the
Laplacian on the spaces Z7(W,, O) and 24 W,). Then according to
the preceding paragraph, the zeta function of the Laplacian on
G (W, x W,, O) is given for Re s large by

ér,O,Wleg(s) - Z Z (*’\ - #)73 Np(’\’ Wl) Nq(,u, W2),

Ap pta=r
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and the alternating sum in the definition of the analytic torsion is

NNy

Z (—I)r rgr,O.Wp(WQ(S)

r==0

[\‘Y 1 }VV 2

=2 (A=)t Y 3 (=) (p + @) Ny, W) N, W)

A, u p-:) =0

= (*’\ — :U‘)is (% (~1)”])1V,,,()\, Wl))(l\f (_1)0 *er(ﬂ) W2))

Au p=0 q=0

Y A= (X DN )Y (1 aN e W),

p=0 q=0

(V; and N, denote, of course, the dimensions of the manifolds W,
and W, .)

We now follow the path which led to formula (2.4). If A # 0, let
N,'(A, W,) denote the dimension of the space

&'\, W) = {$ e &\ W), dp = 0}
== {p IO, W), ddp = Ap}.

We have, as before, N, (A, W)) = N,(A, W) -+ N, (A, W,); but this
implies

Ny

Y. (=D N, W) =0,

p=0
and the second sum on the right above vanishes. Similarly,

No
Y (=) N, Wy) =0
q=0
for each nonzero eigenvalue p of 4 on Z(W,).
Hence

NiNjy

Z (—1)y 7§r.o,wlxwz(5)

r=0

= TN (X 1 ) (3 (-1 N0, ),

»=0
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By the Hodge theorem, N, (O, W,) equals the g-th betti number of
W, , so that

Y (1) ompor ) = XV 3. (1) Pl

This identity has been proved for Re s sufficiently large, but of course
it holds throughout the s-plane for the meromorphic extensions of the
zeta functions. In particular, it implies the relation given in Theorem 2.5
for the analytic torsion.

The last of the three formal results involves the notion of induced
representation [6]. Suppose G, is a group, and G, is a subgroup of
finite index 7 in G,. Suppose O is a representation of G; by n X n
matrices. Let V' be the space of maps ¢ of G, into R® which satisfy

B(g18) = O(g1) $(g)

for g, in G, . V is a real linear space of dimension nr, and the induced
representation U of G, is defined on V' by right translation:

Ug,) d(g) = ¢(gg2),  £:€ G,

THEOREM 2.6. Suppose W, and W, are oriented compact manifolds
without boundary, with the same universal covering manifold W. Suppose
the fundamental group = (W) is a subgroup of m(W,). Then the analytic

torsions satisfy
TW1 = TW2 o U,

where U carries a representation O of 7,(W)) into the induced representation
U® of m(W,). (A similar identity for R-torsion is given in [13].)

Remark. 'The fact that W, is compact clearly implies that =, (W))
must have finite index r in 7,(W,).

Proof. By Theorem 2.1, we can assume that W; and ¥, have
Riemannian metrics which lLift to the same metric on the common
universal covering space W. Let O be a representation of m(W,) by
n X n orthogonal matrices, and E(O) the corresponding vector bundle
on W,. We will establish an isomorphism between 24 W,, O) and
YW, , U° which commutes with the Laplacian. Thus the spectrum
of the Laplacian is the same on the two spaces, and Ty, (U?) is defined
and equals Ty (O), whenever the latter is defined.
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It will be convenient to consider besides the representation U an
equivalent representation defined as follows: Write G, for = (W)) and
G, = Uy Gyoy. for m(W,), where the «, represent the cosets G,/G,
with a; = e. Since a map ¢ in V is determined by its values on the «;,,
Td = o1 D ¢(xy) defines an isomorphism of ¥ onto the direct sum
R of r copies of R*. Let O(g) = O(g)ifge G,,O(g) =0ifg¢ G, ,
and define the representation p of G, on R*" by

p(g) (Z @y/\-) = Z ® Z O(a,l.gafl)yj.
. ’ k=1 j=1
Then p and U9 are equivalent; for if ¢ € V| then

TUg)¢ =3, © U%g) $()
- Z ®¢(al\g)
9 (Y @ d)
= p(8) T¢,
since each o, g is uniquely expressible as gyo; for gy = ;, go;" in G, .
Now the space 29W,, O) can be identified with ¢-forms f on W
with values in R* such that f(gx) = O(g,)f(x), g, € G, . Similarly,
using the equivalence 7, the space ZYW,, U%) can be identiﬁed with
g-forms f on W with values in R™ satisfying f( gx) — p( g) f(x). For

a form f on W with values in R”, let Sf be the form on W with values
in R™ defined by

=¥ ),
If f satisfies f( g;x) = O(g,) f(x), g, € G, , then

Sf(gx) = Z D f (o.8%)

r

—é@ZO@W ) /(o)
- olg

)(SF)()-

Thus S defines a map of Z%W,, O) into Z%W,, U°). The map is
certainly injective. For f =3 @ f; in 24 W, , U°), an easy computation



160 RAY AND SINGER

shows that f; is in 29 W,;, O) and f = Sf,;, so S is also surjective.
Finally, the Laplacian commutes with .S, since it commutes with the
action of G and acts componentwise.

Remark. For X # 0, let 6(A) be the space of g-forms f on W
satisfying 47 = Af. The action of G, = = (W,) on W, commuting
with the Laplacian, determines a representation U of G, as unitary
operators on &, (A). The multiplicity Ny A, O) of A in ZYW,, O) is
given by the intertwining number I(O, U ) [6] of the representations
O and Ug_, the restriction of U to G, . Thus Theorem 2.6 is simply
a restatement of the Frobenius reciprocity theorem I(U°, U) = I(O, Ug).

Besides the three preceding theorems, there is a very important
property of R-torsion which we can state for the analytic torsion, but
have not been able to prove. Namely, suppose W is a compact oriented
manifold with boundary M. Let K be a triangulation of W, and L a
subcomplex of K which is a triangulation of M. Let O be a representation
of = (K) by orthogonal matrices, and suppose that the homology groups
of the corresponding complexes C(K, O), C(L, O), and C(K/L, O) are
free modules with preferred bases. Then [10, Theorem 3.2]

log 7(0) = log 7,(0) -+ log 7, (O) + log 75(0),

where 7, 1s the torsion of the homology exact sequence of the triple,
thought of as an acyclic chain complex of dimension 3N + 2. The
analog of this statement is formed by replacing 74, 7, and 74, by the
analytic torsions of the Laplacians, respectively, on W with absolute
boundary conditions, on M, and on W with relative boundary conditions.
(The boundary conditions are described in Section 3.) If this property
were proved for the analytic torsion, one could hope to prove the two
torsions equal by copying the combinatorial invariance theorem [10,
Theorem 7.1] for R-torsion, or Theorem 9.3 of [10].

The last-mentioned theorem establishes a construction of R-torsion
(or more generally, Whitehead torsion) for manifolds in terms of self-
indexing functions. This construction has led us to what seems to be a
feasible program of proving that Ty (O,)/7y(0,) = Ty (Oy)/7w(O,) for
two representations O; and O, of = (W).

That 1is, let ¢ be a self-indexing function on W, and let
W, = ¢7Y[0, u]). If u is not an integer, W, is a compact manifold with
boundary M,, = ¢ (), and for a representation O of =,(I¥) we have the
restriction of the corresponding vector bundle E(O) to W, . In Section 3
we will present definitions of R-torsion and analytic torsion for this situa-
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tion, where the homology may not be trivial. In Section 7 we will prove
that for the extended torsions, log(7y(0,)/ Ty (0,)) — log(r(O,)/7w(0y))
is invariant under a change of metric on W which preserves the normal
direction to the boundary.

But for any metric on W, the dual to dé is a vector field X orthogonal
to M, for all u. Whenever W, — W, contains no critical points, the
vector field X determines a diffeomorphism F: W, — W, . Since F
preserves the normal vector X to the boundaries, we conclude by
Theorem 7.1 that log(7Tw (O1)/ Ty (Os)) — log(rw (O1)/7w (O,)) 1s inde-
pendent of « as long as one does not pass a critical point.' For small u,
both terms are trivially zero since W, is a cell. If one could prove that
both terms have the same jump as a critical point is crossed, then the
equality of the two terms for W would follow.

As a final bit of evidence that 7', and 7, may be equal, we point
out that for lens spaces, the analytic torsion can be calculated explicitly
and agrees with the R-torsion [14].

3. A TorsioN FOR RIEMANNIAN MANIFOLDS

The setting for the remainder of the paper will be essentially that of
[10, Section 9]. W is a compact, oriented, C* manifold of dimension N,
whose boundary is the union of two disjoint, closed submanifolds M,
and M, . We do not exclude the possibilities that M, , M, , or both,
are empty. O is a representation of the fundamental group (W) by
orthogonal # X n matrices.

The relation between this situation and that described at the end
of Section 2 is as follows. Let 17" be a closed oriented manifold (the
case of Section 2), or let W’ be an h-cobordism: a compact oriented
manifold with boundary the union of two disjoint closed submanifolds
M, and M,’, each of which is a deformation retract of W’. Let ¢ be
a self-indexing function on W’ such that ¢—4(—1/2) = M,". If u is not
an integer, then W = (W"), = ¢ Y[~—1/2, #]) is a compact manifold
whose boundary is the disjoint union of M, = M, and M, = ¢~'(u).
(M, is empty, of course, if W’ is closed.)

In either case, let O’ be a representation of the fundamental group
of W’ by orthogonal matrices. Since W i1s a submanifold of W’ there
is a natural homomorphism of = (W) into = (W), which composed
with O’ defines a representation O of 7;(W). Thus we have the situation
described in the first paragraph. We will eventually have to identify
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the bundle E(O) on W with the restriction of E(Q’) to W. But this
is not difficult; the details are given in the proof of Corollary 8.

Let K be the simplicial complex of a C™, m > 2, triangulation of W,
which contains subcomplexes L; and L, triangulating M, and M, .
Let C(K,L;) be the relative chain group of the simply connected
covering space K of K, modulo that of L, . As in Section |, we may
think of C(K,L,) as a module over the real group algebra R(m). A
preferred basis is given by choosing cells covering those in K — L, .
We define the chain complex C(K, L, ; O) by

C(K,L;0) = R" @ C(R, L)
R(m))
where the representation O is used to make R" a right R(m;) module.

If the chain complex C(K, L, ; O) happens to be acyclic, we can
define the R-torsion of K modulo L, as in Section 1 or [10, Section 9].
The remarks following Definition 1.3 are valid; in particular, the
R-torsion is invariant under subdivision and hence is a function of the
pair (W, M,). In the program described at the end of Section 2, however,
the complex C(K,L;; O) will in general have nontrivial homology.
We can then define the R-torsion only if we can choose a preferred
basis of the homology classes.

In order to do this, we suppose that I¥ is equipped with a Riemannian
metric. The euclidean structure which the metric determines on the
tangent space allows us to define a normal vector to the boundary at
each boundary point of W. Accordingly, at a boundary point of W
we can decompose a real differential form f into its normal and tangential
components: f = fi.n + fuorm - 10 be explicit, let % be the inward-
pointing unit normal in the cotangent space at a boundary point. If f
is a |-form, then f, .., is the orthogonal projection of f on the subspace
spanned by 7. In general, we can write

From —g A7, where *g = () A, (3.1)

The decomposition f = fi. + fuorm 18 likewise defined, component-
wise, for a differential form f with values in the vector bundle E(O)
associated with the representation O.

DeriniTiON 3.2. A differential form f is said to satisfy relative
boundary conditions at a boundary point of W if fi.;, = (8 )ean = O
there. It satisfies absolute boundary conditions if £, = (df )norm = O-



RIEMANNIAN MANIFOLDS 163

We will denote by & = Z(W, O) =Y %% W, O) the space of C*®
differential forms on W with values in E(O) which satisfy relative
boundary conditions at each point of the boundary M; and absolute
boundary conditions at each point of M, .

The boundary conditions introduced above are coercive for the
Laplacian; in particular, the de Rham—Hodge theory holds [2]. That s,
let # = Y ¢ be the space of harmonic forms in & (he# means
he % and dh = 6h = 0). Let A?: #9— CYK,L,; O) denote the
de Rham map defined by

AhE D) = [ (& D), (3.3)

where e is a g-simplex in K, £ € R*, and ( , ) denotes inner product
in R". Then A9 is a one-one map of J#¢ onto a linear space of cocycles
representing HYK, L, ; O). (See the remark after Proposition 4.2).

For the present, note that A% is indeed an element of C4K, L, ; O).
For if e is in L, , A%h(§ ® e) = 0 since h,, = 0 on M, . And if / is
the form obtained by lifting 4 to the simply connected covering space IV,
then for g in (W) acting as a deck transformation on W,

[ eh=] i

= [ &0 h

| (€0, B,

Now the Riemannian metric picks out a preferred base of ¢ for us,
viz., an orthonormal base. And we can use duality of forms, the de Rham
map, and Poincaré duality to map #? onto a set of representatives of
homology classes in C (K, L, ; O). Thus we obtain, as the image of
an orthonormal base in ¢, a preferred base of the homology classes
by which to define the R-torsion.

Since we will make extensive use of the map described above, we
will give a detailed definition. Let us start by reviewing the Poincaré
duality for the complex K. Let K’ be the barycentric subdivision of K,
considered as another C™ triangulation of W. As an abstract simplicial
complex, the vertices of K’ are the simplexes of K. These are partially
ordered by incidence in K, and a simplex in K’ consists of a linearly

607/7/2-6
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ordered subset. K’ becomes a triangulation of W by means of the
barycentric coordinates in K.

For each g-simplex e of K, the dual (V — ¢)-cell *e of e is the union
of those simplexes in K’ whose lowest vertex is e. Strictly speaking,
*e is not a C™ cell in W, but rather the union of C™ cells; but this
will not affect the forthcoming definitions, since integration of an
(N — g)-form over *e is well defined. If e is in the subcomplex L;,
7 =1,2, then e has, besides *e, another dual cell *ie of dimension
N — g — 1, its dual in the submanifold M, .

Fic. 1. A 1-simplex e in L; and its dual cells *¢ of dimension 1 and *'e of dimension 0.

The cells *e, for e in K — L, , are just those which are disjoint from
M, and meet M, only along their boundaries. These cells, together
with the cells *?¢, e in L, , thus form a cell complex K* in W¥.

If L,* denotes the subcomplex of K* consisting of cells *¢ for e
in Ly, then the collection *e, e in K — L, is a base for the relative
chain complex C(K*,L,*). The one-one correspondence ¢« *e of
bases determines an isomorphism p, of the chain group C, (K, L,) onto
the dual of Cy_(K*, L,*). Using the orientation of K* determined by
the fundamental cycle in Cy(K, Ly U Ly), we have for ¢ in C, (K, L),
c* in Cy_(K*, L,*),

COc*, pgac) = (—1)N e, pde). (3.4)

(We write ¢ for the generic boundary operator in each chain group.)
Lifting to the covering manifold W, we denote also by p, the ensuing
isomorphism of C(K, L, ; O) onto CN"%K*, L,*; O).

Now define 4, to be the map 4, = (—1)‘N—1’qpq‘1AN*‘1 * of #°7 into
C/AK,L;; O). That is, for & in #% *h is a harmonic (N — g)-form
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with values in E(O), which satisfies by (3.1) the relative boundary
conditions on M, . We retain the symbol AV for the de Rham map
(3.3) of forms into CN-9(K*, L,*; O). The composition A, is given
explicitly by the formula

A= ()Y [ (6 (E @ (335)

where the summation runs over the g-simplexes ¢ of K — L, and the
elements ¢ of an orthonormal base of R*. Stokes theorem, the definition
of 4, and (3.4) show directly that

A,(8h) == 84 = 0.

Finally, the de Rham-Hodge theory shows that 4, maps #? onto a set
of representatives of the homology classes in C (K, L, ; O).

DrerINiTION 3.6. For the situation described in this section, the
R-torsion 7 ; (O) of the pair (K, L,) will be that given by Definition 1.1
for the chain complex C(K,L,; O), where a preferred base of the
homology classes is chosen as the image under A, of an orthonormal
base of #7, for each gq.

Remark. Since a change of orthonormal base in #¢ is given by an
orthogonal matrix, the R-torsion defined above is independent of the
choice of one orthonormal base. It is again independent of the choice
of representatives in K of the simplexes of K (see the remark after
Definition 1.3). Hence, the R-torsion 7 ; is a function only of the
representation O, the triangulation (K, L) and the Riemannian metric
assigned to W.

PropositioN 3.7.  The torsion 74 of Definition 3.6 does not depend
on the choice of the triangulation of W.

The proof will be given at the end of Section 4. In Section 7 we
will describe the behavior of the R-torsion of Definition 3.6 resulting
from certain variations of the Riemannian metric on W.

4. TuE DE RuaM THEOREM FOR A ComMPACT MANIFOLD
wITH BoOUNDARY

The proof of Proposition 3.7 depends on a form of de Rham’s theorem
which relates the duality between homology and cohomology with the
duality of differential forms on a Riemannian manifold. It was proved
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by Kodaira [4] for closed manifolds, and no important changes are
needed to apply his proof to manifolds with boundary.

Let us start by summarizing the setting for the theorem, as described
in Section 3. W is a C® compact oriented Riemannian manifold of
dimension N, with boundary consisting of disjoint closed submanifolds
M, and M, , either or both of which may be empty. O is a representation
of the fundamental group =(W) by orthogonal n X n matrices, and
E(0O) is the associated vector bundle.

K is a C™ triangulation of W, m > 2, with subcomplexes L, and L,
triangulating the boundary manifolds M, and M,. C(K, L, ; O) is the
chain complex of the relative complex K modulo L; formed by the
action of 7,(IW) on the covering space K and by the representation O.
K* is the dual cell complex formed from the barycentric subdivision
of K and C(K*, L,*; O) the associated chain complex of K* modulo L,*
Finally, the isomorphism p, : C(K,L,; O) — CNYK*, L,*; O) is
defined by the pairing of the base elements ¢, *e, where e is in K — L,
and *e is its dual cell in W.

Rather than consider the space & of Definition 3.2 on the subspace #
of harmonic forms in &, we will now define two spaces of forms, whose
intersection is 7.

DeriniTION 4.1, Let &, be the space of C* differential g-forms f
on W with values in E(O), satisfying
f = 0,
fnorm =0 on M, .

Let Z? be the space of C® g-forms f with values in E(Q) satisfying

df =0,
Jtan =0 on M, .

ProposiTiON 4.2 (de Rham’s theorem). The map A? defined by
(3.3) carries Z onto the space of cocycles in CYK,L,; O), and
A, = (—1)WDep 1AV « (see (3.5)) carries Z, onto the space of cycles
in CK,Ly; O). If fis in Z, and g is in Z9, then

he)=| fns
= (= ([ ] o

e

= (A(/), 4%(2))- (4.3)
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Remark. By (4.3), A,(f) is a boundary in C/(K,L,; O) if and
only if f is orthogonal to Z. Hence as a corollary to 4.2, A, maps
HC = Z A Z7one-one onto a set of representatives of the homology
classes in C(K, L, ; O).

Kodaira’s proof for closed manifolds proceeds by using a “Poincaré
lemma” to pull f back to a neighborhood of the g-skeleton of K and
g to a neighborhood of the (IV — g)-skeleton of K*. Once this is done,
the supports of f and g will intersect only in disjoint neighborhoods
of the barycenters of g-simplexes of K, and the proof of (4.3) becomes
a local affair.

One way to apply this procedure to our situation is to replace f by
a form vanishing near M, and g by a form vanishing near M,. We
will do this, and show that the forms will continue to vanish in these
regions during the pulling back described above, in a pair of lemmas.
Then we will be able to apply Kodaira’s proof with only minor changes.

Lemma 4.4, Suppose fis in 2, and g in Z7. Then there are forms
fyvin Z, and g, in Z% such that the support of fy is disjoint from M, ,
the support of g, is disjoint from M, , and

(f’g) - (fN vgﬂ)y
(Ao(f), 4(2)) = (Ao fx), AY(80))-

Proof. 1f ¢ =0, 27 contains only the null function unless M, is
empty, so g, = g will trivially have support disjoint from M, . So
suppose g > 0.

Let »¥ be a smooth function without critical points from a neighbor-
hood N(M,) of M, onto [0, 1) such that A, = (xV)~1(0). Such a function
can easily be constructed by using a partition of unity. Let X be the
vector field in this neighborhood which is dual to dx", and integrate
along X as in Section 3 of [9] to construct a diffeomorphism of M, x (0, 1)
onto N(M,). If x = («1,..., x¥ 1) is a local chart in M; and 0 < ¥ < 1,
then under the diffeomorphism (x, xV¥) becomes a chart in N(M,).
Because we have chosen X dual to dxV, this chart has the property
that (dxV),,, = 0, while (dx¥),,,m = 0 for i << N, on M, .

Writing a form g in N(A,) as

g= . Gigorni dx" A - A dx'

]
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where g; ;. is an alternating function with values in R", set
Rig= Y (Rg)i, , dx* A - A da',

Bt

where
1 .
(Ri8)iyonniy o ¥Y) = (—1)Ht f Eipooni, (¥, 1X) &N dt.
0

Since this formula is invariant under change of local coordinates in M,
it serves to define R, g consistently throughout N(M,). Note that R, g
vanishes for ¥¥ = 0. Computation shows that if

Ztan(%) = Z gil...,-q(x, 0) dx A o A dx™

iy rig<N
=0, xeM,,
then
dR,g + R, dg = g. 4.5)

Now for g in &9, apply R, to the restriction of g to N(M,), and let

g = & — d(R,g),

where ¢ is a smooth function vanishing outside N(M,) and equal to
one in the neighborhood 0 < xV < 1/2 of M, . (4.5) shows that g,
vanishes for ¥ < 1/2 and so is in Z4.
If fis in &, then
(Ag(f), A%8)) — (Aa(f), 4%(80)) = (Ag(f), AR, 8))
= (A[f), e* AR g))
= (04,(f), A($Ryg))
= (A4,5f), A(JRg))
= 0.

On the other hand, applying Stokes’ theorem to

d(Ryg n *f) = (g — &) » *f,
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the resulting integrals over M, and M, vanish since (*/ ),n = faorm = 0
on M, and since R, g = 0 on M, . So

(/,8) = (/. 80)-

We construct fy (for g << N) by applying a similar operation in a
neighborhood of M, to the closed form *f, and this completes the
proof of 4.4,

Lemma 4.6. Let e be an r-simplex in K — (L; U L,), and suppose
that fis a C® g-form whose support is disjoint from M, and is contained
in a neighborhood of e. Suppose that the support of 8f is contained in a
neighborhood of de. Then if v > q, there is a C* (g + 1)-form R, f such
that the support of f — R, f is disjoint from M, and is contained in a
neighborhood of ce.

Let e be an r-simplex in K, and suppose that g is a C* g-form whose
support is disjoint from M, and is contained in a meighborhood of the
dual (N — r)-cell *e. Suppose that the support of dg is contained in a
neighborhood of d(*e). Then if v < q, there is a C® (¢ — 1) form R., g
such that the support of g — dR., g is disjoint from M, and is contained
in a neighborhood of o(*e).

Proof. Given the r-simplex e in K — (L, U L,), there 1s a C® chart
x1,..., 2V defined in a neighborhood of e such that, given § > 0,

vy (e <, z<x P<1

7l

ngpw<yw<ﬂ

while if e has a face in M,, x* =0 on M, and «* >0 on e — M, .
We can assume that

T

f=0 i Y @RE0 o Y,

r+1 1
=0 if Y ()R <1—3,
1

and f = 0 for 0 < » < § if e has a face in M, .
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Writing the closed (N — ¢)-form *f as

o Y (g, dX A A daV

QN

set

Qe*f = Z (Re*f)iy--iquil dxil A A xv‘,N-nfl,

iy rrin_gy
with

¥y

(Qe*f)il--.q;qu_l(x) = Z xt Jal t#(*f)l-‘,;l,,,iN“qfl(txl,..., tx7, x™H L xN) dt,
=1 0

where ## is the number of integers among ¢, ***iy_, ; which do not

exceed 7.

Q.,*f is defined in the given neighborhood of e, and vanishes if
Zﬁu (x9)? = 8. Q,*f vanishes also for 0 < ' < 8 if ¢ has a face in M, .
0.*8f = (—1)1Q.d *f vanishes in the same regions, of course, and
vanishes also if 37 (x)2 < 1 — 8. Note that in the integral defining
the components of O *8f, we will have # > 0, since r > ¢. Using
this fact, computation shows that

dQe*f + Qed f = f (47)

in the neighborhood.
Now let ¢y be a C® function of ..., ¥ such that

=0 if Y@R=1,
1

p=1 if YEPR<I-—s,

and define
Ref = (_l)q * ‘/’Qe*f)

extending R,f to be a C® (¢ + 1)-form vanishing outside the given
neighborhood of e. Then (4.7) shows that R,f has the properties
described in 4.6.

The function R., g is again constructed by the dual process applied
in a neighborhood of the cell *e,
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Lemma 4.8. Let U be a neighborhood in W which is homeomorphic
to the open unit cube in R™.

Suppose [ is a C* g-form, q¢ << N, with support contained in U, and
suppose 8f =0 if 1 < q <N, [*f =0 if ¢ =0. Then there is a
C* (g + D)-form f' with support contained in U such that f = 5f".

Suppose g is a C® q-form, q > 0, with support contained in U, and
suppose df =0 if 0 < g < N, [g =0 if ¢ =N. Then there is a
C® (g — 1)-form g" with support contained in U such that g = dg'.

This is precisely Lemma 3.1 of [4], and we will not repeat the proof.

LemMa 4.9. Let U be a neighborhood in W which is homeomorphic
to the closed unit cube in RV, and suppose the face (x¥) (1) lzes in M, or M, .

Suppose f is a C* g-form, ¢ << N, with support contained in U, and
suppose 8f = 0. Then there is a C* (q + 1)-form with support contained
tn U such that f = &f".

Suppose g s a C® g-form, g > 0, with support contained in U, and
suppose dg == 0. Then there is a C* (¢ — 1)-form g’ with support contained
in U such that g = dg'.

Proof. The proof uses the same operator R, as in the proof of
Lemma 4.4, but applied in the opposite direction, so to speak. That is,
writing

g = Z &iy-iy dx" A e A di'
set
Rig = Y (Rig)ii, , dx A o A dx's,

SR ST

where
-1
(R1g)iys, (%) = (— 1)1 J Loty (¥ sy 8L 16N 2N .
q

Since the face (xV)71(1) lies in the boundary of W, g’ = R, g is a C*
form with support in U, without further alteration. And by (4.5),
we have g = dg’ when dg = 0.

We will now proceed to the proof of (4.3). Let K, be the union
of the simplexes of K of dimension <g, and let K}_, be the union
of the dual cells *¢, e € K of dimension <{N — ¢. Given f in &, and

g in Z% we construct g-forms f, and gy_, such that (compare with
Lemma 3.2 of [4]):

—q
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The support of f, is disjoint from M, and is contained in a given
neighborhood of M, U K ;

The support of gy_, is disjoint from M, and is contained in a given
neighborhood of M, U K}_,;

Oy = dgn_g = 0;
(fq ’gN-a) = (f’ g);
(Aq(fq)’ Aq(gN—q) = (Aq(f)’ Aq(g))'

We construct f, by defining inductively coclosed g-forms f,,
g < r < N, such that the support of f, is disjoint from M, and is
contained in a given neighborhood of M; U K, , and such that

(A1), A1(g) = (A(f), A(g)), (4.11)

for g in 2,

Note that to start the procedure we have the form fy given by
Lemma 4.4. So suppose that > ¢, and that f, has been defined. For
each r-simplex e in K, let i, be a nonnegative function vanishing outside
a neighborhood of e, such that {,, e e K.} form a partition of unity
on K,. We can suppose that the g-form (1 — ¢,) f, has support in a
given neighborhood of de, and ,f, =0 for ecL,. For e not in
L, VL,, ./, satisfies the hypothesis of Lemma 4.6. Set

frAl - fr - Z SRe(l/’efT)'

e€K~(L{\UL,)

Since f, = ¥ ¢, f,., application of 4.6 to each form i, f, — SR,(.f.)
shows that f, ; has support disjoint from M, and contained in a given
neighborhood of M, U K, . (4.10) and (4.11) follow just as in the proof
of Lemma 4.4.

Again, gy_, 18 constructed by the dual procedure.

We can assume that the neighborhoods of M; U K, and M, U K}
have been chosen so that the support of gy_, A *f, is contained in the
union of disjoint neighborhoods of the barycenters of g-simplexes of
K — (L, U Ly). Thus if we suitably define smooth functions {i, , e € K}
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and {¢.,, e K3_,} whose restrictions to K, and K}
form partitions of unity, then

(f)g) = (fq !ngtl)
—_ Z (¢[g_fq ) ll’*eng'Z)’

eeK—(L,UL,)

(ALf), Ag)) = (Au(fa)s Aq(g)v!q))
- Z (Aq(‘/‘efq)s ‘4{l(¢*vgN7q))'

eeEK—(L\UL,)

_q» Tespectively,

Hence it suffices to prove (4.3) for each of the summands above.

In other words, it suffices to prove (4.3) under the assumption that f
has support in a neighborhood of a g-simplex e of K — (L; UL,),
¢ has support in a neighborhood of *e, and 8f and dg have support
in neighborhood of de and &(xe), respectively. But this is just Lemma 3.3
of [4]; for clarity (and since a minor change is necessary), we will repeat
Kodaira’s proof.

For ¢ = 0, N, the proof is trivial since (if ¢ = 0) the function g is
constant in the support of f. The proof for 0 < g << N proceeds by
induction. Let ¢ be a (¢ -+ 1) simplex such that e lies in de’. Applying
Lemma 4.8, or Lemma 4.9 if ¢/ meets L, , there are forms f’, f” with
supports in neighborhoods of ¢e’ — e and ¢/, respectively, such that

3" = 9f,
o' =f—f
We can assume that £ vanishes on the support of g, so that
(f g) =" 2)
= (/" dg)-

But there is a (¢ + 1)-form g” with support in a neighborhood of *¢',
such that g” = dg near €', dg’ = 0 outside a neighborhood of d(*¢").
By the induction hypothesis, (4.3) holds for the forms f”, g”. Then

(,8) =("¢)
= (A f"), 4(¢")

= (—1)¥-Dla+D) (f ’ 7 ,g")

= (—1)@-a (Le *f, Lg),

proving the induction step.
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To see that A, maps 2, onto the space of cycles in C(K, L, ; O),
Kodaira’s proof can again be used. One constructs, by induction,
linear maps B, of C (K, L, ; O) into C® g-forms on W with the proper-
ties:

For each ¢ in C_, B (c) vanishes in a neighborhood of M, ;
For each ¢g-simplex e of K — L, , B,(e) has support in a neighborhood

of ¢;
AB(c) = ¢;

B,(6c) = 8B(c).

It does not seem worthwhile to repeat the details in this case; we refer
the reader to [4]. We will point out, however, that in defining B,(e)
when e meets L, , one must use Lemma 4.9 rather than 4.8. The reason
for this is clear when ¢ = 1. By(e) is to be defined as a solution of
8B,(e) = By(2). Lemma 4.8 cannot be applied if e meets L, since
then [ *By(de) = 1.

Of course, remarks of a similar nature apply in constructing dual
maps B? to show that A% maps Z7 onto the space of cocycles.

We turn to the proof of Proposition 3.7. As in the proof of Lemma 9.1
of [10], we want to show that 74 ; = 74, -, when K" is a triangulation
of W which subdivides K. To do this, however, we can apply the
Combinatorial Invariance Theorem 7.1 of [10]. We need only check
that the preferred bases of the homology groups H,(K, L, ; O) and
H/(K',L,’; O) correspond under the subdivision operator.

That is, we have chosen a fixed orthonormal base (#,) of the
space #? of harmonic forms in 2% W, 0),0 < ¢ << N. The torsion
7x,, Was defined by using the preferred base of H/(K, L, ; O) repre-
sented by the cycles A, (h,), and 74 ; - by the base of H(K',L,’; O)
represented by the cycles 4,'(h,).

We have also the subdivision operator § of C(K,L;; O) into
C/(K',L,"; O) given by

Se =3 ¢.

e’'Ce

As is well known, S determines an isomorphism of H (K, L, ; O) onto
H/(K',L,’; O), and the Combinatorial Invariance Theorem states that
the torsions of the two complexes are equal if the preferred bases of
the homology groups correspond under this isomorphism.
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So we have to show that the cycles (4,'(%,)) and (S4,(h,)) represent
unitarily equivalent bases of H (K’, L,"; O), which is not immediately
obvious.

What is obvious is that for any ¢-form g,

But then for fin & and g in 2,

e

¢’Ce ¥ ¢

(S, Ag) = (-0 Y ¥ ([ n] g

rEK—L, e'Ce ¢ ‘

— (—W¥-e Y (' *f,[g)

ecK—L, U % ve

= (A4(f), 4(9))
= (/8
= (4, (f), A(g)).

According to the remark after Proposition 4.2, this means that S4,( f)
and A,'(f) differ by a boundary. In particular, the cycles (4,'(%,)) and
(SA,(h,)) represent the same base of H (K’,L,"; O), and so the Com-
binatorial Invariance Theorem can be applied to prove Proposition 3.7.

5. T'HE HEAT KERNEL ON W

In this section we will construct and derive some properties of the
fundamental solution of the initial-value problem

S D = A1, xeW, 10

. .1
lim £ (v, 7) = f(x);

for forms in the space &% = Z(W, O) of Definition 3.2.

The initial-value problem (5.1) for real forms on a manifold with
boundary was investigated by Conner in [2]. He showed that in the
Hilbert space of square summable forms, the Laplacian on forms
satisfying either the relative or absolute boundary conditions of 3.2
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extends to the generator of a semigroup of compact self-adjoint operators,
each of which commutes with d and 8. Conner’s results, of course,
extend immediately to forms with values in the bundle E(O).

The operators of the semigroup are given by a kernel, which is the
fundamental solution of (5.1). We will construct the fundamental
solution by the parametrix method of E. E. Levi; this will provide us
with the local estimates needed in Sections 6 and 7. The parametrix
method was used by Milgram and Rosenbloom [7] to construct the
fundamental solution of the heat equation for forms on a closed
manifold: the modification of the parametrix to make it satisfy the
boundary conditions follows the integral equation method used, for
instance, by Conner [2]. A very careful exposition of these methods
1s presented by Friedman [3], and we will refer to his work for a number
of estimates and calculations. We depart, however, from these methods
by using a specialized form of the parametrix, as in [11], which makes
evident the property of the heat kernel used in the proof of Theorem 2.1.

In order to describe the local estimates of the heat kernel, it 1s useful
to bring in a distance function p on W. This is a function of the pair
of points (x, v) of W with the properties

pAx, y)is C* on W x W,

p(x, x) = 0, plx, ) >0 for x #y;
o
o) 2%, ¥) = gu(x) when y = x.

Such a function can easily be constructed using local coordinates and
a partition of unity. Set

k(x, v, 1) = KtV it; (5.2)

K and c¢ are generic constants, which may depend, for instance, on a
choice of local coordinates.

ProrosiTiON 5.3. Given a continuous form f on W as initial value,
the unique solution in 2UW, O) of (5.1) is given by

5,1 = (PO
= [ P30 7 #(3),
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where the kernel
Ple,y, 1) = 3 Py (6 3, 1) dX'V A n da G dy o A dy

is a symmetric double form which for each t > 0 belongs to 77 as a function
of each variable on W.
The kernel P has the property

d.P(x,y, 1) = 8,P(x, y, 1),
and satisfies the bounds

67)1 [BT]
—— P (x o pmEn2h(x oy — .
(8x1)”’(6y’)” P?t"'l,l.,ﬂl---!,l(x? ¥, t) = t k(%, y) )) m, n 0) l) (5 4)
for 0 <t < t,.

Finally, if x is in the interior of W, the kernel has the local asymptotic
expansion

Px, x, 1) = z (= N=2mRC () gt 12) (5.5)
0

as t — 0, where each C,, is a smooth double form, and where the convergence
of the remainder term is uniform on any compact subset of the interior of W.

Remark. We include the asymptotic expansion (5.5) in order to
verify, for completeness sake, the claim made in the proof of Theorem 2.1
concerning the kernel K, of (—4,)7%. For suppose W is closed and
suppose that the cohomology of W with coefficients in the bundle
E(O) is trivial. Then the expansion (5.5) holds at each point x of W,
and, since 4 is strictly negative, P(x, x, ) decreases exponentially as
t — . Thus for N odd

K(x, ) = ﬁ | (0 d

1 * s—1
=70 fl 15-1P(x, x, ) dt
1 ‘ Ci(x)
I .2, Gk —ND)

E<N/2

+

+ % f : #5-1R(x, 1) dt, (5.6)
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where each component of R(x, t) is bounded by a multiple of #/2
Each term on the right is meromorphic in the half-plane Res > —1/2
and vanishes at s = O because of the factor 1/I°(s).

Before embarking on the construction of the heat kernel P, which is
rather lengthy, we will state and prove a corollary of Proposition 5.3.

COROLLARY 5.7. Let 1 be the space of harmonic forms in Z9(W, O);
ie., he A if and only if he @9 and dh = 5h = 0.
Let f be a C* g-form on W which is orthogonal to 1. Then

Gf = | Pu)far
0
is in 2% and satisfies
4Gf =

If fis C* on W and satisfies f,,, = 0 on M, fiyomm = 0 on M, , then
[ has the Hodge decomposition

f=dg +8g +h,
where g, is in the space Z,_, of Definition 4.1, dg, is in Z9, g, is in Z4F1,

and 8g, is in &, .
If f is a square integrable q-form on W, and

(f,dg) =0, ge2(W,0),
(f’ 8g) - 07 4 E‘@(HI(W’ O),

then f is in 4.

Proof. 'The operator P is clearly compact on square integrable
forms on W, and has the spectral representation

Pl,5,8) = 3. et (x) pul3),

n=0

where 0 = Ay << A, << -- << A, — 0, and ¢, runs through an ortho-
normal base of eigenforms of 4 corresponding to the eigenvalue —A,, .
Since the eigenforms are complete, a square integrable form f which
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satisfies ( f, ¢,) = 0 for # > 0 will be harmonic. But for n > 0 we
can write

1
Pn — + r (d&pn + qu)n)!

and the statement of the last paragraph of 5.7 follows immediately.
It also follows from the spectral representation that if f is orthogonal
to #%, then the L? norm of P(t)f decreases exponentially as ¢ — oco.
Since for each t > 0, the operator P(¢#) is a contraction in the L? norm,
the integral which defines Gf converges in the L? norm. In fact, setting

i3
o= [ P@)fa,
1/n
g, 18 in 77 for each n, and converges to Gf in L2 Using the heat equation,

dg, = P(n)f — P(1jn) f
>

in L? as n — oo. In particular, Gf is a weak solution of 4g — —f:

(Gf, o) = —(f, o) peZ.

Now Morrey [12, Lemma 4.5] has shown that the quadratic form
(df, df ) + (8, 8f) is coercive for either of the boundary conditions
Jnorm = 0 or fi,n, = 0. This allows application of the theory of elliptic
operators (see, for instance, [l], especially pp. 141-144) to show that
the weak solution Gf is a strong solution and in fact belongs to 9.
We will indicate the notation and some of the results of this theory
as it applies to our situation. Some of this will in turn be used also
in the proof of Proposition 6.4,

To begin with, let f, g be C® g-forms on W with values in E(O).
For « = (oy,..., &) an m-tuple of integers chosen from 1,..., N, and
for a local chart x!,..., ¥V, define the ¢-form (&/éx) f by

(aL;af)ilmiq - W?m(am (ﬂl...fq)'

For 8 another such m-tuple, set go = [ g*#. The N-form
2. 8%(0/ox) f A* (8]0xP) g

607/7/2~7
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does not depend on the choice of coordinates; so we can define

8 P
f— QB—-— * =y
(/s &m fwgﬁg el g 2

This is a scalar product in the space of C® g-forms; denote by H, (W, O)
the Hilbert space formed by completion in the norm

Hg”m = {(g’ g)m + (gv g)0}1/2'

The Sobolev inequality [1, p. 32] implies that if g is in H, (W, O),
then fis C! for | << m — NJ2. For | < m, g has strong derivatives of
order /, defined as L? limits. In particular, dg and &g are defined for g
in H(W, O).

Let V' = V(W, O) be the closed subspace of H (W, O) spanned by
the C® g-forms g which satisfy g.,, = 0 on M, and g, ,,;, = 0 on M, .
There exist constants ¢; , ¢, such that for g in V

(dg, dg) + (8¢, 3g) = ci(g, &h — ca(g, &) -

This inequality expresses the coerciveness of the quadratic form over V.
The proof starts with the application of Green’s theorem

(dg, dg) + (3, 8g) = —(g 4g) + f gArdg—| gy
M, M,
The principal part of the Laplacian 4 is just the operator

2 (9)ex’) g(8/6x*)

in the notation we have been using. Thus we have

8 [ 8
(g, 4g) + (8,81 = 2}; fw T (g““g A¥ gﬁg) + (g, 4g),
bt

where A4 is a linear differential operator of first order. The first term
on the right will contribute an integral over the boundary M; U M,
of W. Near M, , take coordinates x,..., ¥V as in the proof of LLemma 4.4,
so that M, = (xV)~}(0), and so that x* is constant along the normal
to M, for i <~ N. In these coordinates, g’V = g,, = 0 for 7 < N.
It is not hard to see that g, ., =0 on M, for C® g implies that
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(@2)norm = (0/8xY) gion = (8/éxV) g on M, . Hence the contribution of
the first term on M, is

0
NN % . *
AT g = f A *dp.
JMeg 2V 8 M2g .4
Using a dual argument near M, , we arrive at

(dg, dg) + (3¢, 8g) = (g, ¢h + (g Ag).

But the Schwarz inequality implies

(g, Ag)l < Cy(g, 8o + Cul(g, £)o(g )
< %’(3» g)l + (Cl + %022)(49’ g)o >

which yields the coerciveness inequality with ¢; = 4, ¢, = (C; + 1C,?).

The fact that fnorm — 0 on ]‘42 for Cooé’ 1mPlleS (dg)norm - (3/ axN) 8tan
on M, (and the dual statement at M,) make it clear that I is the closure
in Hy(W, O) of 24 W, O). Since for g in (W, O),

—(g 4g) = ci{g,8h — g & >

the convergence of g, and 4g, in L? norm imply that g, is a Cauchy
sequence in V. In particular, Gf is in V' and

(dg, dGf) + (5, 8Gf) = (&, f),  geV.

It follows [1, Theorem 9.8] that for fin H, (W, O), Gf is in H,, .,(W, O)

and in fact

'i Gf”"lf? %: Kwa‘m (58)

for some constant K. In particular, if fis C®, then Gf i1s C® and satisfies
AGf = —/, (Gf)tun = 0on M, (Gf)norm = 0on M,.
Finally, for every g in V,

J' g A *de—f SGf A *g = 0.

M, M,

Since gy, can be chosen arbitrarily on M, and g,,,., on M, , this implies
that (dGF )orm = 0 on My, (3G )an = 0 on M, .
Suppose next that f is C®, orthogonal to 7, and satisfies also

6o7/7/2-7%
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fian = 0on M, froom = 0 on M, . On such forms, clearly, G commutes
with d and &, and we can write

f=—461
— dG5f + 5Gdf.

g = G8f =06Gfisin &, | and g, = Gdf = dGf is in Z*. But g
also satisfies ( g()an = O on M, , and this implies (dg)yan = 0 on M,
since g; is C®; in other words, dg; is in 2. Similarly, 8g, is in &, .
If f satisfies the boundary conditions above but is not orthogonal to #9,
we obtain the Hodge decomposition by applying the above to f — &,
where £ = lim,,,, P(f) f is the orthogonal projection of f on %

Note, finally, that for the Hodge decomposition f = dg, 4 8g, + &
as constructed above, (5.8) implies for instance

for a constant K - K, . This fact will find application in the proof of
Proposition 6.4.

We turn to the proof of Proposition 5.3. To start with, embed W,
as 1n [2], in a closed C* Riemannian manifold W’. The vector bundle
E(O) can be extended to W’ and we can define the space Z(W’, O)
of C* forms on W’ with values in the extended bundle. We will first
construct the fundamental solution of the heat equation for forms in
2(W’, O).

To do this, let 7(x, y) be the geodesic distance between the points
%, v of W', which is defined for x, y sufficiently close, say for r(x, y) << 8.
Using the differential equation for geodesics, one can derive (sec [4,
Section 4], for instance)

NI o
Zgzk,(x) o r2(x, ¥) e ri(x, y) = dr¥(x, y),

) a2
T 64) gt (e, ) = 2N+ O, ).
It follows from these that for 4 a function of one real variable and f a
differential form, for y fixed in W,
A0 ) f) = 4f
, 8
S (2N+4B +4rﬁ)f
+ 4rtf,
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where @/or means the directional derivative of each component of f
along the geodesic from y, and B is a matrix function, vanishing at y,
which acts on the components of f.

Still  keeping the point y fixed, let @_,(-,y) =0, and for
k=0,.,n+1, let . be a double form vanishing for »(x, y) = 2§
and satisfying

0 )
(r& + B+ k) OL0) = 40 (L 0),  (59) <5,
(Po( 3, YDy wiine iy = & (D) &g D)
Set

p(x: Y, t) - (47Tt)7m”2 6772(1"”)/"“,

and

n+l

Ql(x’ Y t) = p(‘é‘, Y t) Z tkék:(xv y)'
[\
Then Q' is a C* double form on W’ x W’ which satisfies, tor r(x, y) < §,

(4 %t_) O — tipdd,,, . (5.10)

Q' is the parametrix for the closed manifold I, It has the properties:
For any continuous form f on W',

0Mf=[ 0CyH*f)
is a C form satisfying
ImQ'(t)f = f, uniformly;

=0

For f, = f(-, &) C' on W’ x [0, o0), f([,Q'(t — ") fy, dt' is C? on W' for
each ¢ > 0, C? as a function of ¢ > 0, and

(4= [ oo — g~ [ (s F)oe— g

The proofs reduce to fairly standard formulas for the heat kernel in
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euclidean space if one uses geodesic coordinates. The details can be

gained from [3, Chapter 1].
Because of the last relation above, it follows that the kernel

Pt = P, 1)
— 00+ [ Q1)U ar (5.11)

will satisfy the heat equation
0 L
(A — —8t—) Pty =0
if Uyis Clon W’ X [0, o0) and satisfies the integral equation
d ¢ d
U, ={4d——_-)0(t d———0'(—1t)U,dt'.
¢ ( 3t)Q()+f0( 8t>Q( ) Ui

The first property above of the parametrix shows that P’ is the funda-
mental solution of (5.1) on W’. Uniqueness of the fundamental solution
follows by standard methods which we outline below.

Because of the way we have constructed the parametrix, the integral
equation for U, is quite easy to solve by iteration. In fact, if

v = (4 - -2) 0,

i = | L (4 %) Q' — 1) UM ar,
0

then use of geodesic coordinates and standard calculations in euclidean
space shows that, because of (5.10), each component of U{™ is dominated
by a fixed multiple of ((mn)!)~1 21k, with k given by (5.2). Hence

U =y u™
1

gives us a solution of the integral equation. It is not hard to see that
the kernel U, is a C?* double form on W’ x W’; in particular, the
kernel P'(t) given by (5.11) satisfies the heat equation.
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The fundamental solution is unique in the following sense. Suppose

’

P and P are kernels satisfying

(A~—)P(I:( )P”t)
lim P(1)f = lim P'(1) = f,

-

for each continuous form f. Then applying Green’s theorem on the
closed manifold W’,

0 - f (AP (u, 3, ') A *P"(u, %, t — ') — P'(u, y, t') A *AP"(u, x, t — 1))

"

°
= f (—*P u » Vs t() A *P”(u) x,t— t,) + P((u’y’ tl) Y ct’

/))
8 f P/( Y I,) A *Pl/( /)
8 E/ u, » v ll, ‘c) t t).

Integrating this equation over (0, t) yields
0= P'x,y, ) — P'(y,x,1),

and taking P" = P/,
Plx,p, 1) = P'(y, %, 1)
— P"(x, y, ).

Uniqueness and the fact that 4 commutes with d and 8 show that
P'(t) commutes with d and 8.

Calculations of the type used in the proof of Theorem 8, Chapter 9
of [3] can be applied to show that P'(z) is actually C® on W’ x W’
and to derive estimates of the form (5.4) for the derivatives. Here is
an alternative proof using the special form of the parametrix. It follows
from (5.10) and (5.11) that for x fixed in W', P'(x,y,t) is C** in y
for each t > 0, and satisfies estimates of the form (5.4) for derivatives
in y up to order 2n. But uniqueness implies the semi-group property

P'(ty = P'(¢/2) P'(¢/2), and so
Plx, v, 1) = J P'(x, u, 1/2) A *P'(u, y, 1/2)
_ J’ P'u, x, 1/2) A *P'u, 3, t/2),

from which we can derive estimates for derivatives in both variables.
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Finally, (5.11) implies that P’(f) has a local asymptotic expansion
of the form (5.5).

We now turn to the construction of the fundamental solution P
of the initial boundary-value problem (5.1), using the method of single
layer potentials as in Chapter 5 of [3]. A single layer potential is given
by the action of a kernel on a smooth form defined on the boundary
of W, producing a form on W which satisfies the heat equation with
vanishing initial data in the interior, and which has an identifiable
discontinuity at the boundary. Thus the addition of such a potential
to P’ will yield a kernel satisfying the boundary conditions 3.2 if the
corresponding form on the boundary satisfies a suitable integral equation.
Rather than writing down this integral equation, we find it more
efficient simply to exhibit the solution which one obtains by iteration.

LemMA 5.12. Let P’ be the fundamental solution of the heat equation
on the closed manifold W' containing W. Set

09, 3,1) = P 3, 1),
t
Qumt(x, y, ) = _J dt'f @O (u, y, £ — 1) A *P'(x, u, 1)
0 M,
Oy, 1 — 1) A *dP'(x, u, 1))

t -
+ f dt' J (P'(x, u, ') A *dQ"(u, y, 1 — 1)
0

Moy
4+ 8L(x, u, t') A O (u, vy, t — 1)),
for m =0, 1,..., where all operations in the integrand on the right are
applied to the variable u.

For y fixed in the interior of W, Q™ s C® in the interior of W and
satisfies

(A — %) O™(x, y, ) = 0,

W

lim Q'™ (x, , 1) =0, m

For m = 1, Q™ satisfies the “‘jump relation”
Hm QU(x, y, £) = Q™(xy, 3, 1) + O™ V(%0 ¥ Dhan »
x-Xg
lim 3Q™(x, y, 1) = 30" (xy, y, 1) + HEQ" (%0, ¥, Dtan »
X-xg
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as x approaches the point x, of M, along the interior normal to M, , while

lim Q(x, y, t) = Q"(xy, ¥, 1) + HO" (%0, ¥> Dnorm »

xoxg
llm dO(x, y, t) = dQ™(x,, y, 1) + JdO" V(xg, ¥, £))norm »
Jor normal approach to the point x, of M, from within W.

Finally, in a given coordinate system, the components of Q" for m > 1
satisfy the estimates

H
AP
(axi)n dreelgidy iy

(0,3,1) | < CHT(mD) £ 2080 DR, 1)
(5.13)

for n =0,1,0 <t < t,, where D(x) denotes the distance of the point x
from the boundary M, U M, of W, and where the constants C and c,
as well as the generic constants in the definition (5.2) of k depend only
on t, and the choice of the coordinate system.

CoroLLARY 5.14.  The kernel P defined by

oK

P(x’ s f) - Z (ﬁz)m Q(m)(x, Y, t)

m=-0

is the fundamental solution of the initial boundary-value problem (5.1),
and has the properties stated in Proposition 5.3.

Proof. Because of the estimate (5.13) the series defining P converges
uniformly on W and is differentiable term by term. Thus application
of the jump relation to each term shows that P satisfies the relative
boundary conditions of Definition 3.2 on M, and the absolute boundary
conditions on M, . The fact that each term Q' satisfies the heat
equation with vanishing initial data in the interior of W shows then
that P is indeed the fundamental solution of (5.1).

Because of the boundary conditions (3.2), we may apply Green’s
theorem to prove that the fundamental solution P is unique and
symmetric, just as was done previously for P’. As a corollary of
uniqueness, we see that P’ commutes with d and 6 on 2. This yields
the first statement of the second paragraph of 5.3, which can also be
derived directly from the definition of Q.
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A further corollary of uniqueness, as before, is the semigroup property
Pl,y,1) = [ P(x,u,1j2) A *Plu,, 1/2)
w
— f P(x, u, t/2) A *P(y, u, t/2).
w

The estimate (5.13) implies (5.4) for # = 0. But applying this to each
factor in the integral on the right yields (5.4) for n = 1 as well. Although
it becomes more difficult to obtain sharp estimates for higher derivatives,
it is easy to prove by iteration of the semigroup property that 4"P
is dominated by a multiple of £~k for each integer n. Applying Sobolev’s
inequality, we see that P is C® on W.

The proof of (5.13) proceeds, of course, by induction, and we will
carry along an additional statement in the induction, namely, an estimate
on the boundary for the components of Q™ which actually occur
in the integral defining Q+1 and their tangential derivatives up to
order two. This will enable us to obtain the estimate (5.13) in the
interior for Q1 and its first tangential derivatives. It will also imply
that (5.13) (with # = 1) holds for dQ™+V and 6Q'*+V, i.e., the com-
ponents of these forms have the same bounds as the tangential derivatives.
Since the derivative in the normal direction to the boundary can be
expressed as a linear combination of 4, 8 and the tangential derivatives,
we will thus obtain (5.13) for all first derivatives.

We will present the details of the calculations only for the second
of the four terms in the formula for Q™+ For this term, the suitable
induction hypothesis is as follows: Take a local chart (xL,..., x¥) near
the boundary M, as in the proof of Lemma 4.4, so that M, = (xV)~(0)
and gv = g,v = Ofor7 << N. Thenfor xin M, andi, << N, | << p < g,

m , m -1\ o Do
(Bran)” Qi (%, 3, 1)} < €™ (F( 5 )) gim=mizg=cD" 0 /th(x, y, 1) (5.15)

for n =0,1,2, 0 <t < t,, where iy, = ¥, _n a;(8/0x¥) denotes an
arbitrary derivative in a direction tangent to the boundary. To start
the induction, note that O = P’ satisfies (5.15) for m = 0, since
D( y) is dominated by a multiple of »(x, y).

In estimating the first term of the formula for Q™+ we would have
to carry along an estimate like (5.15) for the components of 80,
and their first tangential derivatives. We will see from the formula for
Q™+ given below that these can be obtained in exactly the same
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way as (5.15). The terms involving integrals over M, are of course
dual to the first two terms.
The second term, which we will now consider, is given by

at Al
—J dt’f O"u, y,t — ') A *dP'(x, u, 1) = J dt' F(x, y,t', t — 1),
0 M, 0

where, in the coordinates we have chosen near M, , F is given by

‘ C
Fouwytht =1) =

x Y ng ) &) QG (u, 3, t — 1)

kyaly<N 1

s

. J dut - duN1 \/g‘(u_)

X AP )y (%, 8, 1).

The other terms can clearly be handled by similar methods.
Consider first a term F' in the form F which involves the components

k<N,

,
uz‘ PNk

D

of dP’. We have the estimate

0

Oulx P/ s dyiNG Ry 1(x’ u, t’)

:O(»(t—u)— o, u)«l—l)p(x u,t')

J(@') 12 R(x, u, 1), 1, arbitrary,
x fk(x, U, t’)’ 1f iu < N, 1 :/\\i " :i\\f q,

since the factor @, in the definition of the parametrix on W’ vanishes
at # = x under the second condition.

The components of QO which occur in the integral defining I are
just those to which (5.15) applies. Hence we can use the properties
of the euclidean heat kernel in RV~ to obtain

3t e — 0 < O (D (PEN) T 1 G, )

where
ky(x, 3, 1) = (/,vc(Lﬂ(acHDQ(a/)/ttlfzk(x7 v, t).

But we will use this bound only for #' > #/2. When ¢ <C t/2, we can
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integrate by parts in the integral defining F”, since only the components
(8]ou*)P" for k << N are involved. Then using (5.15) with » = 1, we
obtain

Fiaalo, 3, 61— ) < O (P (1)) T - ooy 1 by, 3, )
Taken together, these two estimates form an integrable upper bound
for F on 0 < ' << t, and we see that the contribution of F’ to Q"+
satisfies (5.13) with n = 0 if the constant C has been chosen large
enough (independently of m).

Since (5.15) holds also for n = 2, we would like to apply the same
techniques to obtain (5.13) for n» = 1. When ¢ < #/2 after the first
integration by parts performed above, the integral defining F’ will
contain the factor

1 o .
— O (o 7, 0)) s, , ).
But the geodesic distance clearly satisfies

Lg“ — u)(x — ) + O@®),

and since #21s C® on W’ x W', we can differentiate this estimate to get
i G ) + - 1¥(x, u) = O(r¥(x, u))
and hence

a ’ ’ a ! 14 2
WP(x,u,t)Jr—a—t;;P(x,u,t) < k(x, u, t').

Using this and then integrating by parts a second time, we gain the
desired estimate.
Ifi, < N, 1 < pu < g, we have

m—+ 1\ , N
Fiaso, 3, 00t — )] < O (D (M) (0 — )00y, v, 1),

Since

m+ 1 l)

t
P m=1)/2(3\—1/2 g4 ym/2 -
f ey B( 3

the contribution of F' to Q™+ satisfies (5.15) with n = 0. We are
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dealing with smooth functions, and so we can differentiate the bound

for (¢/éu*)P" which yielded this estimate. Hence there is no difficulty

in twice using the technique of the preceding paragraph and integrating

by parts to obtain the estimate (5.15) with n == 1, 2 for these terms.

Now consider the form F” which arises in F' from the components
E(l%v_ P(z'):(/r)

of dP’. Differentiate the estimate

i, u) = gun(E)(Y — @V Y g — ) — w) 4 O(r?)

6N

to get

o P ) = —2gun() ¥ 4 O(r)

for u in M,, as in Lemma 3.4 of [2]. Since the principal term in

(o) 2u)P" is

6 7 ) 1 6 g ’
(W px, u, t )) Py, u) = — A ri(x, u) p(x, u, t') Dy(x, u),
we have
a , , q x;\/ ,
W P({):(k)(x’ u, ! ) - Hgiulc“(u) gNN(u) Tp(*’g u, t )
1
oy L P ) ,
e O(l _+‘ t/*)p(x) u)t)
xN
< (1 + 7_) k(x, u, t). (5.16)
Therefore,

Fooy, 0t —1)

o (I (5 = ey (1 ) e kG ),

and (5.13) for n = O follows from integration over 0 << ¢ < t. If x is
in M, , then x¥ = 0 and we get (5.15) for # = 0 just as before. And
again, since differentiation of the estimate (5.16) is valid, we can obtain
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the bounds (5.13) and (5.15) for the tangential derivatives by the same
techniques as before.

Thus we have derived (5.13) and (5.15) for the tangential derivatives
of the term

t
f di' J’ O™ (u, y,t —t') A *dP'(x, u, t'),
0 My

and the same methods clearly give these estimates for the other terms
in the formula for Qm+1),

Before proceeding to estimate the normal derivative, we will prove
the first of the four jump relations given in Lemma 5.12. This clearly
arises from the term (5.16) of the kernel. Since k, << N for each of
the indices &, ,..., Ry in (5.16), the principal term of that estimate will
vanish at ¥ = x unless also 7, << N, 1 < p < N. Hence the normal
component of O™+ will be continuous as x approaches M, . When

L <N, 1 < pL<q,1fxlsmWandxolsli,wnhxl—xo,l<N
then

O3, 1) — O5ilwn 1) = [ a3

xN

. f dul - duN-1 V/@
X Qo 3,1 — 1) pla, u, ) + O(1)
as x® — 0. Using the estimate for r*(x, u) given above, one can calculate

f dt' — J-du1 o duN =\ g(u) plx, u, 1)y = 3+ O(1)

as x" — 0, while for each & > 0,

N
, X

- duN -t/ g(u) plx, u, t') = O(1).

r{xg ul+t’>8

Since QU is continuous in the pair (u, #), these estimates combine to
give the jump relation

. (m+1) (m+1) (m)
lzlva(Q)(g;(j)(xy Y, t) — Q(Zr; (J)(xO » Vs t)) = ;’Q(:’r;;(j)(xo » Y t)’
P

when 7, << N, 1 <{ p < ¢. Note that the third of the jump relations
is just the dual statement to this.
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In the interior of W, the formula for Q"1 can be differentiated to
obtain

Al
3Oz, y, 1) = — J” ar | 80Uy, £ 1) AP (3, 1)
My

at

+ [ [ @A, t) 8 QU 3, 1~ 1)
0 M,

AP (x, u, 1) A O, y, £ — 1)),

1
dQm I (x, y, 1) = — f ar f (30" (u, y, t — ') A *8P'(x, u, 1)
0

M,y

+ 0,3, — 1) A AP (x, u, 1)

t
+ f dr f SP/(x, u, ') A *dQ(u, y, 1 — t'),

0 M,
where again all operations in the integrands on the right apply to the
variable u. We see at once from this that 6Q"*1 and dQ+V satisfy
the second and fourth jump relations, respectively.

A further immediate consequence of these formulas is the bound
(5.13), with n = 1, for 8Q™+1 near the boundary M, and for dQ""+1)
near the boundary M,. But to gain these bounds near the opposite
boundaries we will have to transform the formula for Q41 by an
application of Green’s theorem.

Proceeding by induction, suppose that dQ'™ and 8Q™ have the
bounds (5.13), # = 1, and, moreover, have limits at the boundary of W.
This is certainly the case for m = 0. Let O™ = Q0 if m > 0,
01" = 0. Then using the fact that Q" satisfies the heat equation,
with zero initial data when m > 0,

Coe
im)(x, ¥, zl) _ )f ar’ W J Q(m)(u, ¥, t t/) A *P/(x’ u, t/)
0 W

t
= f dr f (AO™ (u, y, t — t') A *P(x, u, 1)
0 W
— O, y, t — 1) A *AP (%, u, 1))
t
- f dr’ f Em(SP'(x, u, ') A *O"(u, y, t — 1)
0 aw

4+ P'(x, 0, t') A ¥dOu, y, t — 1)
— 80 (u, y, t — 1y A ¥P(x, u, 1)
— O u, y, t — 'y A *dP'(x, u, t')).
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Taking the jump relations into account, the right side becomes

gm)(x’ , t) - Q(""“)(x, ¥y, t) ¥+ %Qiﬁl)(x,y, t)

1t ~
| [P e 1) A Alim QU 3, 0 — 1)
0

My

+ P, u, ') A *lim QO (u, y, t — 1))
ot

— | ar f (lim 8Q™ (u, y, t — ') A *P'(x, u, t')
0 M,

+ lim Q" (u, v, t — t') A *dP'(x, u, t')).

Differentiating this yields formulas for dQ™+1 and 60+ which give
the bounds (5.13), n = |, near M, and M, , respectively, and show
also that the hypothesized limits exist. We might remark that (with a
little more manipulation) the above shows that in fact Q™(x, y, f) =
O")( y, x, t) and d,Q™(x, y, t) = 5,0™(x, y, t) in the interior of W.

As observed at the start of the proof, the bounds for dO™, Q™)
and the tangential derivatives of Q™ imply the bounds (5.13) for the
normal derivative as well. Hence we have completed the proof of
Lemma 5.12, and, because of Corollary 5.14, of the Proposition 5.3
as well.

6. VARIATION OF THE HEAT KERNEL

In this section we will examine the behavior of the fundamental
solution of (5.1) as the metric changes on W, the result being the
following.

PropOSITION 6.1. Suppose grven a family of metrics on W, indexed
smoothly by a veal pavameter o. Suppose that for each metric in the family,
the normal direction to the boundary of W is the same.

For each value of the parameter o, let A(c) be the Laplacian for the
corresponding metric, and let P, be the fundamental solution of the initial
value problem (5.1) for this metric.

Then P,(t) depends differentiably on the parameter o for each t > 0, and

dia Tr P(t) = —t Tr((Sad — dod — add -+ add) P, (1)),
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where o = =71k, % being the derivative with respect to o of the algebraic
operator x on forms.

Remark. TFor closed manifolds, (d/do) Tr P(t) = t Tr(d(o) P,(1)).
The above formula does not reduce to this in general, the reason being
that P, commutes with 4 and 8§ only on the space Z(W, O), which
is not invariant under «.

Proof. Let o,¢" be two values of the parameter of the family of
metrics. For operations defined in terms of a metric on W, we will
indicate which of ¢ or ¢’ is involved by the absence or presence of a
prime, e.g., 4 = 4d(o), 4" = A(¢’). Unless indicated otherwise by a
subscript, all operations act on the variable « of the double forms below.

We will make use of the identity

foA g = J”Wg nf

— [ garyrr

YW

= [ A

Now, to start the proof, write

t .
{ dt’ ‘ (AP(x, u, t') A *P'(u, y,t — ') — P(x,u, t') A *A'P'(u, y, 8 — t'))
W

v 0 o

a

ot c ~
= " P(x, u, t") A *P’ t—t
JO dt P JW (%, u, 1) A *P'(u, v, )

— lim J ()1 *P(x, u, ') A KD (u, y, ¢ — 1)
1=t w

—lim | Plx,u, t') A *P'(u, y, t — )

1'-0J

- (*,);1 *yp(xi ¥, t) - Pl(x) ¥, t)'

Next, put 4 = —8d — dé, A" = —&6'd — d&’, and apply Green’s
formula

[ drnzg=1 savoe+[ fnre
w Jw aw
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using the identity given at the start to handle the term 8’'d. The result is
()" *P(x, 3, 1) — P'(x, 3, 1)
= f: dt’ fW {—dP(x,u, t') A *dP'(u, y, t — t)

— 8P(x, 4, ) A P (4, 3, 1 — 1)
- d(() PG, w, 1) A AP,y £ — 1)
+8P(x, 4, 1) A P (3,1 — 1)

at
+ J dat’ f (P, y,t — 1) A *dP(x,u, 1)
0 ow

— 8P(x,u, t') A *P'(u, y,t — ')
— (*)VEP(x, u, ') A FdP (4, 3, £ — 1)
+ 8P (uyy,t —t') A *P(x, u, t')}.

Since P and P’ satisfy the relative boundary conditions on M, and
the absolute boundary conditions on M, in their respective metrics,
the first and last terms in the integral over ¢W = M; U M, vanish.
The second term vanishes on M, and the third on M, . But the normal
direction to the boundary is the same in each metric. Hence (see the
remark at the start of the proof of Lemma 5.12) there are coordinates
(x%,..., xV) near a point of the boundary M, such that M, = (xV)"1(0),
while on M, , g;v = giv = 0, 7 << N. Therefore on M,, P, ., =0
implies (¥*P'),, = 0, while on M, , P,,,, = 0 implies ((+)~! *P),,, = 0.
So these terms also disappear, and after a little rearranging

(*,);1 *yP(x! Y t) - P/(x’ Y, t)
_ f ; ar J’W{—dp(x, u, ') A (* — *)dP'(u, y, t — t)
()R — ) P, u, £) A FdP(u 1 — 1)
— 8P(x, u, t') A* (6 — &) Pju, v, t — t')}. (6.2)

In a local coordinate system, the operator x — % is represented by a
matrix; since the metric depends smoothly on the parameter o, we
may write

* —*" = (¢ — o) A(o, o),
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where A is represented by a bounded matrix satisfying

lim Ao, o) = #(o)

A tes

uniformly on W. We have the estimate (5.4) for each of dP and dP’
and applying the standard calculations for the heat kernel in euclidean
space, we see that each component of the first term of the volume integral
above is bounded by a fixed multiple of (¢ — o")(#'(z — t'))"'/% Hence
the contribution of the first term to the right side is O(¢ — o).

The derivatives of the matrix 4 in a fixed local coordinate system
on W are likewise bounded and continuous in ¢’. Hence the estimate
(5.4) can be applied also to the terms which involve

d((+) '(x — #) P) = (0 — o) d((+") " 4P),
(6 —8)P = (0 — o')(A 18 + 8(x')1 4) P.
We see that their contribution to the right side is also O(¢ — o).
Applying the bounded operator x,” to both sides of (6.2), we see
that *P — «'P" is O(¢ — o) uniformly on W. In particular, P’ = P,

is continuous in ¢, uniformly on W, and we can use this fact and the
uniform continuity of A and its derivatives to obtain

d . , Y
% (*y(a) Po(x’ Vs t) - (171,13;1’ (U -G )—1(*y P(x’ Y, t) — Ky P (x:y; Z))

t
— f ar’ f w f—dP(x, u, t') A ¥dP(u, y, t — t')
0 W

+d(x1k P(x, u, t')) A *dP{u, y,t — t')
— 8P(x, u, t') A *k x 1 8P(u, y, t — t')
— 8P(x, u, t') A *8(x71 %k Plu, y, t — t'))}.
We see that (d/do) x P satisfies the same estimate (5.4) as does P.

But now we can again apply Green’s formula, taking care that the
boundary conditions are satisfied, to rewrite the volume integral above:

t
—d— (x4(0) Py(x, v, 8)) = f dat’ f s, 4—Px, u, t') A S x Lk dP(u, v, t — t')
do 0 -

4+« k P(x, u, t') A *8dP(u, y,t — t')
— P(x,u,t') A *d % 1 6P(u, y,t — t')
— V& Plu,y, t —t') A doP(x, u, t')}.
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We can further transform this expression by using

fw*—l%f/\*g:fwg/\*f

d ¢ .

“#l, e
d
a'of fr'e

:f fakg,
w

and
4.,

— (_l)q(NAI) % (* *)

=k 1 Lol g,

The result is, finally,

t
) P ) = [ e [ P, ) n $3dPlw
Pl 4, 1) A *a8dP(, 3,1 — 1)
— P(x, u, ) A *dodP(u, 3, t — 1)
Py 3,t —t') A *adSP(x, u, 1)}

t »
= f dr’ | {bad —add — dod - odd),
)} W
X P(x, 0, 1) A xy %, Pty 3,8 — 1)}
+ f dt A d8), — (¢ ),

X P(x, v, t') A %, x, P(u, v, ¢

')

(6.3)

The operation of integrating the exterior product of two forms
over W does not, of course, depend on the metric. Since the trace
of P,(t) is given by the integral of the exterior product with itself of the
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double form x, P(x, y, t), taken at y = x, we obtain (d/do) Tr P,(t)
by applying the latter operation to (6.3). Having done so, we can
interchange the order of integration on the right, and integrate with
respect to x before applying 4 and 8 on the variables # and ». But then
each of the integrals with respect to x reduces to

f P(x,v,t") A s, Plu,x, t — t') = P(u, v, t).
w

Hence (d/do) Tr P,(t) is given by the integral over W of the exterior
product with itself of

—1(Sad — add — dod + dS), P(u, v, t) + 1((+ dS), — (% dd), P(u, v, 1),

taken at v = . Since this operation is the trace, and since the second term
above vanishes at v = u, we get the desired formula for (d/do) Tr P,(f).

We will apply Proposition 6.1 in the next section to examine the
behavior of the analytic torsion as o vanishes. We will also want to
consider the behavior of the R-torsion defined in Section 3. For this
we will have to compare orthonormal bases for the spaces of harmonic
forms for the two different metrics. The result we will want is the
following.

ProPOSITION 6.4.  Suppose, as before, that we have a smoothly param-
eterized family of metrics on W, for each of which the normal direction
to the boundary of W is the same.

For each value o of the parameter, let H, be the space of forms which
are harmonic in the corresponding metric, and which satisfy the relative
boundary conditions of 3.2 on M, and the absolute boundary conditions
on M, . For each o there is an orthonormal base (hj(0)) of H, such that
for each j hy(c) is a differentiable function of o, h; = (d|do)h; is in X7, and

(h]- ’ ﬁj) - "lz(hj o), (6.5)

where as before o = 71 &,

Proof. Let f be a smooth form on W which satisfies f,,,, = 0 on M,
Joorm = 0 on M, . These boundary conditions are independent of the
choice of the metric within our family, since the normal direction to
the boundary is the same for each metric. Moreover, we saw in the
proof of Proposition 6.1 that for each o, of satisfies the same boundary
conditions.

607/7/2-8
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We can therefore apply the Hodge decomposition of Corollary 5.7
to of:
of = dg, + 8, + h.
Define
F(f) = —dg, — 3h.

The form F,( f) so defined satisfies

dF(f) =0,
8 Fo(f) = —do(aaf )
Flf) ) = =42t h),  he .

By (5.9), F, is a bounded operator on the space H, (W, O), which
is clearly independent of o. This means that we can apply the Picard
iteration method to solve the differential equation

d
2 H(o) = F,(k(o)

in H,(W, O), with initial value £(0) in 5 at ¢ = 0. The solution #4(c)
1s, of course, independent of m, and since m is arbitrary A(s) is C®
on W for each o.

Writing

() — h(O) + | :Fu<h(a'>> do’

shows that dh(c) = 0. We will show that for g satisfying g,., = 0 on M,
and gyopm = 0 on M, , we also have (A(o), dg) = 0; by Corollary 5.7,
this will imply that A(c) is in 7, .

To see this, write

2 00), dg) = 5o [ o) n *dg

_ (% (o), dg) -+ (A(o), adg).
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But

(4 ho), dg) = (il dp)
= (3,F,(i(a)), 8)
= —(8,h(0), £)
= —(h(o), o, dg).
Hence (h(o), dg) is constant, and since ~(0) is in J#;, (h(c), dg) =0
for all a.

Now let (%;(0)) be an orthonormal base of J#;, and let %;(c) be the
solution of our differential equation with initial value %;(0). Since

d% (o), (o)) = (h(0), ha(0)) + (hi(o), k(o) + (o), (o))
= (Fo(h(0)), hil(0)) + (hi(0), Fo(hi(0))) + (hs{0), aHi()))
= —2(oh(0), (o)) — §(y(0), ali(0)) + (Ai0), ahy(o))
=0,

(hi(a)) is orthonormal in #;, and, of course, is a base since
dim #, = dim , .

Equation (6.5) comes from setting & = j in the second line above.

7. VARIATION OF THE TORSION

Let W be a manifold with boundary as described in Section 3, and
O a representation of the fundamental group =(IW) by orthogonal
matrices. Let P,(t) be the fundamental solution of the initial value
problem (5.1) for forms in 24 W, O).

We want to define the analytic torsion for W as in 1.6, but we do
not want to assume that the homology of W with coefficients in E(O)
is trivial. So we must alter the Definition (1.5) of the zeta function.
It is clear from the spectral representation of P,(¢) that

H,= 1112 P
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is the orthogonal projection operator onto the space #¢ of harmonic
g-forms in 24, and that

Tr(P(t) — H,)

decreases exponentially as ¢ — co. Hence

laold) = gy [ 17 THPAD — Ho)ds (7.1)

defines an analytic function of s for Re s sufficiently large. It is known
[17] as in the case of a closed manifold, that {, , has a meromorphic
extension which is analytic at s = 0.

DeFINITION 7.2. The analytic torsion 7',(0) of the Riemannian
manifold W with boundary is the positive real root of

N
log T (0) = § ¥, (—1)" 9Z;,0(0).
=0
We will investigate the change in T(O) as the metric varies on W,
leaving the normal direction to the boundary the same. The method
is the same as that of the proof of Theorem 2.1, but we no longer have
the asymptotic expansion (5.6) which showed that {, ,(0) =0 for
closed manifolds. We are therefore forced to consider instead of 7'(0O),
the quotient T, (O)/Ty(O') for two representations O, O" of m,(W).

TuroreM 7.3. Let O, O be representations of the fundamental group
m( W) such that the homology of W with coefficients in E(O) and E(O')
is the same. Suppose a family of metrics on W, parameterized by o, for
which the normal divection to the boundary is the same. Then

10g(Tw(O)/ Tw(0) = 3 g (—=1) Tr((H, — H,)),

where H, and H/ are the projections onto the spaces H,, A, of harmonic
forms in YW, O) and DYW, O"), respectively. Recall that « is the
algebraic operator 1 %

Proof. Note that the assumption about the homology of W implies
that, for each choice of o,

TrH,=TrH/



RIEMANNIAN MANIFOLDS 203

and that
| TrPy(t) — Tr PJ(t) < e, t2=1,

for some ¢ > 0, where, of course, P, and P, are the heat kernels for

the spaces 2% W, O) and Z%(W, O’), respectively.

Let ¥ be a point of W; we can assume that the neighborhood
Us ={y:7¥x,y) < 8} of x is simply connected, where » is the
geodesic distance on W. Being a local operator, the Laplacian is the
same on sections of Z4 W, O) and P4 W, O') over Us . This means that
we can apply Green’s formula as in the proof of Proposition 6.1 to
obtain

t
P, 3, 1) — P/(x, 9, 1) = f K f oy TP, 1= 1) A %P (0, 1)
7oL, u) =
— 8P (x, u, 1)y A *P/(u,y,t — 1)
— Px,u, ') A *dP/(u,y, t — 1)
L8P (u, y,t — ') A *P(x, u, t')). (74)

Because of the boundary conditions, this holds whether or not the
boundary of W intersects Us. Using the estimates (5.4), we have then

| Tr P,(t) — Tr P,/(t)] < Kt=N2eclt, t < 1.
Hence

) 1 ,
Lao) = Liole) = o7 [ 7 TePlt) — P (1)
has the analytic extension in the s-plane given by the right side above, and
, : N S , dt
log(TO) Tl 0) = 1 X (~1q [ Tr(Pe) = P) G- (79)
7=0

Because of (7.4), we can differentiate under the integral sign on (7.5)
with respect to the parameter o. Proposition 6.1 gives

 log(T(0)/Tu(0")
=1 i (—1)rq Jm Tr((abd — add 4 dad — Sad (P, (t) — P,'(2))) dt.

One must now take care in permuting the operators above, since «
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does not leave the spaces 27 invariant. However, we can see by an
application of Green’s theorem that

Tt(dedP (1)) = Tr(e8P,(t) d)
— Tr(a8dP, (1)),
Tr(8adP(t)) = Tr(adSP,,,(2)).

Hence, as in the proof of Theorem 2.1,

2 L 10g(T(0) Tw(0) = Y LTI — o) d

o Z (—1) 11m Tr(c Po(t) — P/(2)))

= Y. (-~ 1) Te(e(d, — H,).

In 3.6 we defined the R-torsion for a triangulation K of W, and in
Theorem 4, we showed that this R-torsion depends only on the manifold
W and its Riemannian structure. We will now examine the behavior
of the R-torsion as the metric varies.

THEOREM 7.6. Suppose as before a family of metrics on W with the
real parameter o, for each of which the normal direction to the boundary
is the same. Then the R-torsion 7y of Definition 3.6 satisfies

d N
o log 74 (0) = % g ¥ Tr(aH ),
for each representation O of =(W), where H, is the projection operator
onto the space of harmonic forms in 29 W, O), and o = 71 %.

Proof. Let K be a smooth triangulation of W, with subcomplexes
L,, L, triangulating the boundary manifolds M; and M,, so that
Tw = Tk, - We assume K fixed; then 7y depends on the metric only
through the choice of a preferred base of the homology groups as the
image of an orthonormal base of harmonic forms.

In computing 7, (O), we can choose a base for the boundaries

B(K,L,; O) = 3C,.((K, L, ; O) arbitrarily, so we proceed as follows.
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For each g, pick a base b? = (b;2) of the space of coboundaries
BYK,L,; O) = ¢*C*YK, L, ; O), independently of the metric. For
cach b+, pick an element §%" of C4(K, L, ; O) such that g*b¢ = b3+,
again making the choice independent of o. Finally, for each o, let
h? = (%) be an orthonormal base of harmonic g-forms in the space
W, O) in the corresponding metric. Then (b, b4, A%(h2)) is a
base for CY(K, L, ; O).

Let £ = (£,) be an orthonormal base of R"; g, together with the cells e
of the triangulation, determines a preferred base of CYK, L, ; O).
Let D2 be the matrix of the change from this to the base constructed
above, so that

D= (& B, (87D, | (6,0 h1)),

where e runs through the g-simplexes of K — L, .
Consider the base of C(K,L,; O) which is dual to this. Part of
this base consists of elements b,' of C, satisfying

b b7 =0,
<bqi1 Bg+1> = SL] ’
by, A1)y = 0.

These elements form a base for the boundaries B, = ¢C,,; .

Another part of the dual base consists of elements 5¢_; of C, satisfying
<5(§-1 0 =85,
i1, 651 =0,
Boa» AR = 0.

For each such element, &bi_; = b} , .
Finally, since

(A (A, A%(hy)) = 8,
(Ay(h), b = 0,
the remaining members of the dual base are just the elements

A ) + oc)t,
where

e, 0D = —{Ayhf), 677
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and A, = Q,'¢, , then one has ¢; ® ¢, A ® hy' in the sense of (26)
and (27), 1.e.,

(h' ® hyYu) = . (1, 0)(¢1 & a)(w). (42)

To prove (42), we first assume that %," = Q,'$, € §,'(A) for some A,
&, (A) denoting the subspace of §,' corresponding to &,-(A) under the
isomorphism &,” =~ §,.. Then, in view of (21), (21') and (34), the
left side of (42) can be transformed as follows:

(hy & hy)w.) = 7.- J By () mottye — %, 0) 1 &, (1, — 2, )

W,

([ gl w0 o) do,) d.a

= 7o/ 0) | ([ el 0 g vy) ()

Vi,

X i (00, 0) ™ dio) ol — ) (o — by, ) dty

=7/, 0) [ daen) dales — o) oy — b, ) oy,

which proves (42) for A" € §,'(A). This computation is legitimated by
the absolute convergence of the double integral on the second line,
which follows from the fact that the function

Ou(er) = [ [, O | guulaw® — vl |y ()] (a0, ) d

4

belongs to Ly(V;) (see 10). It follows from (42) and from what we have
proved in 9 that for £, € §,'(A) and k,’ € §,’ one has 2, ® hy’ €L, and

Ay & ks |l =11y |l ol =l A" 1 - 11 A" I - (43)

Next, to prove (42) in the general case, let 4," be any element of §,’
and let {#;,} be a sequence in &,’(A) such that lim,,, 4;, = &,". Then
by (43), {#1, ® hy'} is a Cauchy sequence in £, so that it has a limit.
But, by (41), one has lim,(k;, @ &y')(w) = (b @ h,')(w) for allwe W, .
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Therefore, one has #,' ® &, = lim,(k;, ® k') € &, and
(b & hy)(uz) = Tim(h, @ hy')uz) = 3", 0) Wim((P."h1,) ) b2)(u)

— 0./ O)(lim PA,) @ o)(w) = 7./, O)(y © 2)(w)

(for all € V'), which completes the proof of (42). The last assertion of
the Theorem is obvious.

Now, let (4,) be an orthonormal basis of §&,’. Then every element f”
in ¥ can be expressed uniquely in the form

fr=Ydon
v=1
with h, € §,". Then one obtains the following

CoROLLARY. Omne has

h/(w) = JAW b)Y f(w + w') )/ (w + o', 2') 7 d ', (44)

Proof. Put e,/ (w') = «,/(w’, w). Then ¢,/ € §, and for any A" € §,’
one has k'(w) = (e,/, #'). Therefore one has

hv/(w) - (etTh_vl_) - (‘/}v ® éu;,:f/),

where

(b @&, )w') = J P(@”) (w0, @' — ") i (w0 — ", w") d "

+

— Kz’(w, w/) f ¢V(wlf) Kz/(w, L w _ w”’ w//) dzw//
W,

= 1 (, ) (' — ).

Thus one has

Kz,(‘w) w/) l/’V(w, - w)fl(w,) Kzl(w/x w,)kl dzw/

I
= f (W) (@ + w) /(@ + w, ) 1 dw. Q.E.D.
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A section of E(O) can be identified with a mapping f from W into
R which satisfies fo g = O(g)f, for g in =,(W). But for such a map
f o ¥ satisfies

(fo¥)og = (fopg)o ¥
= (O(p2)f) = ¥
= 0,8 f - ¥).

Hence the restriction of f to W, is a section of the bundle E(O,); and
the space Z(W,, , O,) can be identified with the space of restrictions
to W, of forms in Z(W, O) which satisfy the boundary conditions 3.2
on M, — g-(u).

There is, of course, a similar identification of the chain complex
C(K, ; O,) with C(K,, ; 0), if K is a triangulation of W which contains
a triangulation K, of W, as a subcomplex.

To prove Corollary 7.8, let X be the vector field dual to dp in the
metric of W. If the interval [u, , u,] contains no critical points, then
X determines a differomorphism F, of W, onto W, for u, <u < u,,
as in Section 3 of [9]. Hence we can identify W, with W, equipped
with a new metric. Since X is normal to M, = ¢ (), the normal
direction to M, = ¢ ;) will be the same for each of the two metrics.

Hence we need only verify that the homology of W, with coeflicients
in E(O) and E(O’) is the same. Then, because of the identification
indicated in the remark above, we can apply Corollary 7.7.

It is clearly sufficient to make this verification only for u = m + %,
m =0,1,.,N. We can assume a triangulation K of W, which for
each m contains a triangulation K,, of W, as a subcomplex. The

inclusion K,,_; C K,, determines the exact sequence of homology groups
— H(K,,_1; 0)— H(K,,; 0) > H(K,, , K, 1 ; O) > H,_4(K,, 1 0).

But (see Lemma 9.2 of [10]) H(K,,, K,,_; ; O) is zero for g = m,
and 1s isomorphic for ¢ = m to the tensor product of R” and a free
abelian group with one generator for each critical point of index m. In
particular, H (K,,, K,,_; ; O) can be identified with I/ (K, , K,,_, ; O).

Thus we have, from the homology exact sequence,

H(Ky ;3 0) ~ H(Kpia 5 0)
~ H(K; 0) =0, g < m,
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by the hypothesis of Corollary 7.8. Also

Hq(Km > O) ~ H(I(KO > 0) =0, qg>m,

and
Hm(Km » Km-l ; O) Y Hm(Km ; O) @ Hmfl(Km—l , O)

But the last isomorphism holds also when O is replaced by O’, and
we have seen that the two left sides can be identified for each m. Hence
by induction on m,

Ho (K, 3 0) ~ Ho(Ky 5 O).

Since we have seen that we can also identify H (K, ; O) with
H(K, ; O,.1/), the hypothesis of Corollary 7.7 is satisfied and

m

Corollary 7.8 follows.
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