1. Find the general solution to this differential equation.

\[y' = \frac{dy}{dt} = -t(y-2) \Rightarrow \int \frac{dy}{y-2} = \int -t \, dt \Rightarrow \ln |y-2| = -\frac{1}{2} t^2 + c \]

\[\Rightarrow y-2 = Ae^{-\frac{1}{2} t^2} \Rightarrow y = 2 + Ae^{-\frac{1}{2} t^2} \]

2. On the slope field above, sketch the graphs of the three solutions to \(y' = t(2 - y) = -t(y - 2) \) that satisfy the given initial conditions

\[y(0) = -1, \quad y(0) = 0, \quad y(0) = 1. \]
3. Match the differential equation with its slope field. Give reasons for your answer.

\[y' = 2 - y \quad y' = x + y - 1 \quad y' = \sin(x) \sin(y) \]

\[0 = \sin(x) \sin(y) \]
\[\Rightarrow \sin(x) = 0 \]
\[\text{or} \]
\[\sin(y) = 0 \]

So, \(x \) or \(y \) is \(\pm k\pi \)

Slope field I

\[y' = 2 - y = 0 \]
\[\Rightarrow y = 2 \]
\[0 \text{- isocline} \]

Slope field III

\[y' = x + y - 1 = 0 \]
\[\Rightarrow y = -x + 1 \]
\[0 \text{- isocline} \]

Slope field II

process of elimination