MA 114 Worksheet # 19: Differential Equations

1. Complete the following chart:

<table>
<thead>
<tr>
<th>Equation</th>
<th>Order</th>
<th>Linear?</th>
<th>Separable? Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x(y')^2 = y + x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x^5y' = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sqrt{4 - x^2}y' = e^{3y} \sin x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y'' = (\sin x)y')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x^2y' + e^{-y} = 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Use Separation of Variables to find the general solutions to the following differential equations.

(a) \(y' + 4xy^2 = 0 \)

(b) \(\sqrt{1 - x^2}y' = xy \)

(c) \((1 + x^2)y' = x^3y \)

3. Solve \(y' = 4y + 24 \) subject to the condition that \(y(0) = 5 \).

4. A tank has the shape of the parabola \(y = x^2 \) revolved about the \(y \)-axis. Water leaks from a hole of area \(B = 0.0005 \, m^2 \) at the bottom of the tank. Let \(y(t) \) be the water level at time \(t \). How long does it take for the tank to empty if the initial water level is \(y(0) = 1 \, m \)?
MA 114 Worksheet # 19b: \(y' = k(y - b) \) and Graphical Methods

1. Recall that Newton's Law of Cooling stipulates that the temperature \(y(t) \) of a cooling object with respect to time satisfies the differential equation

\[
y' = -k(y - T_0),
\]

where \(k \) is a constant depending on the object and \(T_0 \) is the temperature of the ambient environment. Frank's car engine runs at 210°F. On a 70°F day, he turns off the ignition and notes that five minutes later, the engine has cooled to 160°F.

(a) Find the cooling constant \(k \).
(b) When will the engine cool to 100°F?

2. Sketch the slope field of the differential equation. Then use it to sketch a solution curve that passes through the given point

(a) \(y' = y - 2x, \quad (1, 0) \)
(b) \(y' = xy - x^2, \quad (0, 1) \)

3. Show that the isoclines of \(y' = t \) are vertical lines. Sketch the slope field for \(-2 \leq t \leq 2, \quad -2 \leq y \leq 2 \) and plot the integral curves passing through \((0, 1)\) and \((0, -1)\).
1. \(x(y')^2 = y + x \)
 - Order 1
 - Not linear because \((y')^2\)
 - Not separable
 \[(y')^2 = \frac{y + x}{x} = \frac{y}{x} + 1 \Rightarrow y' = \sqrt{x(y + 1)} \]
 Cannot write as a product \(f(x) g(y) \).

- \(x^5 y' = 1 \)
 - Order 1
 - Linear
 - Separable: \(y' = x^{-5} \)
 \[
 \frac{dy}{dx} = (x^{-5})(1) = \frac{f(x)}{g(y)}
 \]

- \(\sqrt{1-x^2} y' = e^{3y} \sin x \)
 - Order 1
 - Not linear because \(e^{3y} \)
 - Separable: \(y' = e^{3y} \frac{\sin x}{\sqrt{1-x^2}} \)

- \(y'' = (\sin x) y' \)
 - Order 2
 - Linear
 \[
 y'' = \frac{d}{dt} \frac{dy'}{dt} = (\sin x) z = (\sin x) y'
 \]
 Separable if \(\frac{dz}{dt} = (\sin x) z \), separable.

- \(x^2 y' + e^{-y} = 0 \)
 - Order 1
 - Not linear because \(e^{-y} \)
 \[
 x^2 y' = -e^{-y} \]
 \[
 y' = \frac{1}{x^2} (-e^{-y}) \]
 Separable
2. a.) \(y' + 4x^2y^2 = 0 \) \(\Rightarrow y' = -4x^2y^2 \)
\[
\int \frac{dy}{y^2} = \int -4x \, dx \quad \Rightarrow \quad -\frac{1}{y} = -2x^2 + C
\]
\(\Rightarrow \quad y = \frac{1}{2x^2 + C} \)

b.) \(\sqrt{1-x^2} \) \(y' = xy \) \(\Rightarrow \) \(y' = \frac{dy}{dx} = \frac{x}{\sqrt{1-x^2}} \)
\[
\Rightarrow \int \frac{dy}{y} = \int \frac{x}{\sqrt{1-x^2}} \, dx \quad u = 1-x^2 \quad du = -2x \, dx
\]
\[
\ln |y| = \int -\frac{1}{2} \frac{1}{\sqrt{u}} \, du = -\sqrt{u} + C = -\sqrt{1-x^2} + C
\]
\(\Rightarrow \quad y = e^{-\sqrt{1-x^2} + C} = A e^{-\sqrt{1-x^2}} = y \)

c.) \((1+x^2)y' = x^3y \) \(\Rightarrow \) \(y' = \frac{dy}{dx} = \frac{x^3}{1+x^2} \)
\[
\Rightarrow \int \frac{dy}{y} = \int \frac{x^3}{1+x^2} \, dx = \int x - \frac{x}{x^2+1} \, dx
\]
\[
\left\{ \begin{align*}
\frac{x}{x^2+1} & \quad \Rightarrow \int x \, dx - \int \frac{x}{x^2+1} \, dx \\
\frac{1}{x^3} & \quad \Rightarrow \int \frac{1}{x^3} \, dx \\
-x^3 + x & \quad \Rightarrow \int -x^3 \, dx + \int x \, dx
\end{align*} \right.
\]
\[
\Rightarrow u = x^2 + 1 \\
u = 2x \, dx
\]
c.) (cont)

\[S_0, \int \frac{dy}{y} = \int x \, dx - \frac{1}{2} \int \frac{1}{u} \, du \]

\[\ln |y| = \frac{1}{2} x^2 - \frac{1}{2} \ln |u| + C \]

\[\ln |y| = \frac{1}{2} x^2 - \frac{1}{2} \ln |x^2 + 1| + C \]

\[\Rightarrow y = A e^{\frac{x^2}{2} - \frac{\ln |x^2 + 1|}{2}} = A \frac{e^{\frac{x^2}{2}}}{e^{\frac{\ln |x^2 + 1|}{2}}} = \frac{A e^{\frac{x^2}{2}}}{\sqrt{x^2 + 1}} = y \]

3.) \(y' = 4y + 24 \implies \frac{dy}{dx} = 4(y + 6) \)

\[y(0) = 5 \implies \int \frac{dy}{y + 6} = \int 4 \, dx \]

\[\Rightarrow \ln |y + 6| = 4x + C \implies y + 6 = Ae^{4x} \]

\[y = Ae^{4x} - 6 \]

\[S = Ae^{4(0)} - 6 = A - 6 \implies A = 11 \]

\[y = 11 e^{4x} - 6 \]
$4.)$

$$A(y) = \pi r^2$$

$r = x = \sqrt{y}$ since $y = x^2$ \[A(y) = \pi (\sqrt{y})^2 \]

$v(y) = -4.43 \sqrt{y}$ by Torricelli

$$\frac{dy}{dx} = \frac{-4.43 \sqrt{y}(0.0005)}{\pi y}$$

$$\int \frac{y}{\sqrt{y}} \ dy = \int \left(\frac{-4.43(0.0005)}{\pi} \right) \ dx$$

$$\int \sqrt{y} \ dy = \frac{-0.002215}{\pi} \int \ dx$$

$$\frac{2}{3} y^{3/2} = \frac{-0.002215}{\pi} x + C$$

$$y^{3/2} = \frac{3}{2} \left(\frac{-0.002215}{\pi} x + C\right)$$

$$y^{3/2} = -0.0033225 x + C$$

$$y = \left(-\frac{0.0033225}{\pi} x + C\right)^{2/3}$$

$$1 = \left(-\frac{0.0033225}{\pi} (0) + C\right)^{2/3} = (C)^{2/3} \Rightarrow C = 1$$

$$0 = \left(-\frac{0.0033225}{\pi} (x) + 1\right)^{2/3} \Rightarrow$$

$$x = (-1) \left(-\frac{0.0033225}{\pi}\right) \approx 94.5 \text{ sec} = 15.76 \text{ min}$$
1) \(y(0) = 210 \) \(\frac{y}{T_0} = 70 \)
\(y(5) = 160 \)
\(y(t) = 70 + A e^{-kt} \)
\(y(0) = 70 + A e^{0} = 210 \Rightarrow A = 140 \)
\(y(5) = 70 + 140 e^{-5k} = 160 \)
\(90 = 140 e^{-5k} \)
\(-5k = \ln(9/14) \Rightarrow k = -\frac{\ln(9/14)}{5} \approx 0.0884 \text{ min}^{-1} \)

b) \(100 = 70 + 140 e^{-0.0884t} \)
\(30 = 140 e^{-0.0884t} \)
\(-0.0884t = \ln(3/14) \)
\(t = \frac{\ln(3/14)}{-0.0884} \approx 17.43 \text{ min} \)

2) a) \(y' = y - 2x \), \((1,0)\)
\(y' = 0 = y - 2x \Rightarrow y = 2x \)
\(y' = 1 = y - 2x \Rightarrow y = 2x + 1 \)
\(y' = 2 = y - 2x \Rightarrow y = 2x + 2 \)
\(y' = c \Rightarrow \text{isoclines are} \ y = 2x + c \)

b) \(y' = xy - x^2 \), \((0,1)\)
\(y' = 0 = x(y-x) \) \(x = 0 \) or \(y = x \)
\(y' = 1 = x(y-x) \) \(y-x = \frac{1}{x} \)
\(y = x + \frac{1}{x} = x^2 + 1 \)
\((0,1) \Rightarrow 0 \) \((2,0) \Rightarrow 0 - 4 = -4 \)
\((1,0) \Rightarrow -1 \) \((0,0) \Rightarrow 0 - t^2 \)
\((1,1) \Rightarrow 1 - 1 = 0 \)
3. \(y' = t \)

\[c = t \rightarrow x = c \text{ is a vertical line} \]

(0, 1)

(0, -1)

(0, 1)

www.mathscoop.com