1. Suppose \(f(x) = 3x^2 - 5x + 2 \). Determine the following:
 a.) \(f(-3) \)
 b.) \(f(2x) \)
 c.) \(f(x + h) \)

2. a.) Solve \(y^2 + y = 5x - 2y + 8 \) for \(x \) as a function of \(y \).
 b.) Find the domain for \(x(y) \).

3. a.) Solve \(3x^3y - 6x + 3y = 7 \) for \(y \) as a function of \(x \).
 b.) Find the domain for \(y(x) \).

4. Find the domain for the following functions:
 a.) \(f(x) = -\frac{1}{3}x + 2 \)
 b.) \(g(x) = x^2 - 4x + 1 \)
 c.) \(s(t) = \sqrt{9 - t^2} \)
 d.) \(k(s) = \frac{1}{s^2 - s} \)

5. Sketch graphs for functions (a), (b), and (c) from problem 4.

6. Use the graphs sketched in problem 5 to determine the range of (a), (b), and (c) from problem 4.

7. Consider the graphs of \(f \) and \(g \) given below.

 a.) Determine the values of \(f(-3) \) and \(g(1) \).
 b.) For what value(s) of \(x \) is \(f(x) = g(x) \)?
8. Factor the following quadratic equations and determine their roots.
 a.) \(x^2 + 2x - 15 \)
 b.) \(x^2 - 36 \)
 c.) \(3x^2 - 20x - 7 \)

9. Graph \(y = f(x) \), where \(f(x) = \begin{cases} 3x - 3 & x < 2 \\ \frac{1}{2}x^2 & 2 \leq x \leq 4 \\ 4 & x > 4 \end{cases} \)
 (Hint: You may want to find \(f(-1), f(0), f(1), f(2), \) etc.)

10. Find the equation of the line going through the points \((-1, -2)\) and \((1, 1)\):
 a.) in point-slope form.
 b.) in slope-intercept form.

11. Let \(f(x) = -7(2x + 1) \) and \(g(x) = -3x(x - 2) \). Determine the point(s) of intersection of \(f(x) \) and \(g(x) \), and write them in the form \((x, y)\).

12. A ladder is 13 feet long. One end of the ladder is on the ground, and the other end rests on a vertical wall. How far is the base of the ladder from the wall when the top of the ladder is 12 feet from the ground?

13. A man is six feet tall, and he stands a distance of 10 feet from a lightpost. If the top of the light is 12 feet from the ground, how long is the man’s shadow?

14. Recall that the distance formula is \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \). Find the distance between the points \((-2, 0)\) and \((7, 4)\).

15. Suppose that \(f(x) = \sqrt{x^2 - 1} \). Write a simplified expression for \(\frac{f(2 + h) - f(2)}{h} \cdot \frac{f(2 + h) + f(2)}{h} \).