1. **Is the vector** \(\mathbf{w} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \) **in** \(\text{Span} \left\{ \begin{bmatrix} -4 \\ 7 \\ 8 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \)?

Solution: Consider the augmented matrix

\[
A = \begin{bmatrix} 2 & -4 & 1 \\ 3 & 7 & 2 \\ 1 & 8 & 3 \end{bmatrix}
\]

\(A \) is row equivalent to the identity matrix

\[
I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

Therefore the three vectors are linearly independent and so \(\mathbf{w} \) is not in

\[
\text{Span} \left\{ \begin{bmatrix} -4 \\ 7 \\ 8 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}.
\]

2. **Determine if the columns of** \(\mathbf{A} \) **form a linearly independent set.**

\[
A = \begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix}
\]

Solution: \(A \) is row equivalent to

\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},
\]

thus its columns form a linearly independent set.

3. **For what values of** \(h \) **is** \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) **linearly independent?**

\[
\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -3 \\ 9 \\ 6 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 5 \\ -14 \\ h \end{bmatrix}
\]

Solution: Consider the matrix \(A \) with columns \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \). \(A \) is row equivalent to the identity matrix, regardless of \(h \). Therefore \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) is a linearly independent set for every value of \(h \).
4. Prove that if \(S = \{v_1, v_2, \ldots, v_p\} \) is a linearly dependent set of vectors in \(\mathbb{R}^n \), then there exists \(v_k \) in \(S \) such that \(\text{Span}(S \setminus \{v_k\}) = \text{Span}(S) \).

Solution: \(S \) is linearly dependent. Therefore there exists some solution to
\[
x_1v_1 + \ldots + x_pv_p = 0
\]
and some \(k \) such that \(x_k \neq 0 \). Then
\[
-x_kv_k = x_1v_1 + \ldots + x_{k-1}v_{k-1} + x_{k+1}v_{k+1} + \ldots + x_pv_p
\]
and hence
\[
v_k = \frac{x_1}{x_k}v_1 - \ldots - \frac{x_{k-1}}{x_k}v_{k-1} - \frac{x_{k+1}}{x_k}v_{k+1} - \ldots - \frac{x_p}{x_k}v_p
\]
For any \(w \in S \), we have
\[
w = w_1v_1 + \ldots + w_pv_p
\]
\[
= w_1v_1 + \ldots + w_k \left(\frac{x_1}{x_k}v_1 - \ldots - \frac{x_{k-1}}{x_k}v_{k-1} - \frac{x_{k+1}}{x_k}v_{k+1} - \ldots - \frac{x_p}{x_k}v_p \right) + \ldots + w_pv_p
\]
Hence, it is also true that \(w \in \text{Span}(S \setminus \{v_k\}) \). Thus, \(\text{Span}(S \setminus \{v_k\}) = \text{Span}(S) \).

5. Suppose \(S = \{v_1, v_2, \ldots, v_p\} \) is a set of vectors in \(\mathbb{R}^n \). If \(p > n \), prove that \(S \) is a linearly dependent set using only what you know about span and row reduction.

Proof: Given the \(n \times p \) matrix \(A \) whose columns are the vectors \(\{v_1, v_2, \ldots, v_p\} \), the columns of \(A \) are linearly independent if and only if \(A \) is row equivalent to a matrix with \(p \) pivot columns. \(A \) can have at most \(\min(n, p) \) pivot columns. Therefore, if \(p > n \), the number of pivot columns is less than \(p \), which is the number of vectors. Thus, \(\{v_1, v_2, \ldots, v_n\} \) is a linearly dependent set.

6. Suppose \(A \) is an \(m \times n \) matrix with the property that for all \(b \) in \(\mathbb{R}^m \) the equation \(Ax = b \) has at most one solution. Use the definition of linear independence to explain why the columns of \(A \) must be linearly independent.

Solution: Given \(Ax = b \) has at most one solution, in particular \(Ax = 0 \) has at most one solution (and hence exactly one since \(x = 0 \) is clearly a solution). If \(\{v_1, v_2, \ldots, v_n\} \) are the columns of \(A \), then \(x_1v_1 + \ldots + x_nv_n = 0 \) has exactly one solution. Thus, the columns of \(A \), \(\{v_1, v_2, \ldots, v_n\} \), are linearly independent.