Bases, Eigenvalues, and Eigenvectors Homework 11
As always, be sure to justify your solutions.

1. Find a basis for each of these subspaces of \(\mathbb{R}^n \).
 (a) The null space of \(A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix} \).
 (b) All vectors whose components are equal in \(\mathbb{R}^4 \).
 (c) All vectors whose components add up to zero \(\mathbb{R}^4 \).
 (d) All vectors that are perpendicular to \((1, 1, 0, 0)\) and \((1, 0, 1, 1)\).

2. Find three different bases for the column space of \(A = \begin{bmatrix} 2 & 5 & -8 & 7 \\ -1 & 5 & 4 & 7 \\ 0 & 5 & 0 & 7 \end{bmatrix} \).

3. Find three different bases for the null space of \(A = \begin{bmatrix} 2 & 5 & -8 & 7 \\ -1 & 5 & 4 & 7 \\ 0 & 5 & 0 & 7 \end{bmatrix} \).

4. Suppose \(S \) is a 5-dimensional subspace of \(\mathbb{R}^6 \). Prove or disprove:
 (a) Every basis for \(S \) can be extended to a basis for \(\mathbb{R}^6 \) by adding one more vector.
 (b) Every basis for \(\mathbb{R}^6 \) can be reduced to a basis for \(S \) by removing one vector.