Diagonalization Homework 12
As always, be sure to justify your solutions.

1. Find the eigenvalues of
 \[B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \]

2. Prove that the eigenvalues of \(A \) are the same as the eigenvalues of \(A^T \) for any square matrix \(A \).

3. Construct any 3 \(\times \) 3 matrix \(M \) with positive entries so that the sum of the each column is equal to 1. If \(\mathbf{e} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \), prove \(\mathbf{e} \) is an eigenvector of \(M^T \). From above, this means \(\lambda = 1 \) is also an eigenvalue of \(M \). Find an eigenvector of \(M \) corresponding to \(\lambda = 1 \).

4. Let \(A = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix} \). Diagonalize \(A \). Find a formula for \(A^k \).

5. You found the eigenvalues of
 \[B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \]

 above. Can you diagonalize \(B \)? If so, diagonalize \(B \). If not, explain why not.

6. Let \(A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix} \). Diagonalize \(A \). Find a formula for \(A^k \).