Rewriting systems are used to efficiently find and analyze families of perfect groups analogous to p-groups of maximal class. Computer calculations are quite effective with this method and are used to give evidence and counterexamples to various generalizations of the theory of p-groups of maximal class to these families of perfect groups.
Overview

- I began studying some new groups that seemed similar to some old groups.

- There are good ideas and software for the old groups, but the old software does not work for the new groups.

- I made new software to apply the old ideas to the new groups.

- The new software shows the new groups really are different, and probably need new ideas too.
Key points about the new groups

- The new groups have a very natural definition.

- The definition is almost identical to coclass for p-groups (the old groups).

- The new groups have some nice properties very similar to the properties of the old groups, specifically the coclass tree and uniserial action.

- Therefore, one should try to mimic the old calculations and find some partial coclass trees.
Nilpotent normal subgroups to build the group

- Groups G can be understood as built from G/N and N, and we even assume N is nilpotent.

- Groups without nilpotent normal subgroups are tabulated up to very large orders. For small orders ($< 10^{10}$) the perfect ones are direct products of simple groups.

- The unique largest nilpotent normal subgroup is called the Fitting subgroup, and is denoted $Fit(G)$.

- Nilpotent groups are too hard to handle all at once
Modules to build the normal nilpotent subgroup

- All nilpotent minimal normal subgroups are $\mathbb{Z}[G/Fit(G)]$-modules.

- There is a unique largest subgroup of G that is a $\mathbb{Z}[G/Fit(G)]$-module, namely the center of $Fit(G)$.

- G is a repeated downward extension of $G/Fit(G)$ by $\mathbb{Z}[G/Fit(G)]$-modules, namely the factors of the upper central series of $Fit(G)$.

- $\mathbb{Z}[G/Fit(G)]$ is fixed, but has complicated modules

- My family is defined by requiring we use only simple modules
What if the modules are simple?

- If they are simple modules, then $\text{Fit}(G)$ is a p-group.
- The upper central and lower central series are equal.
- In fact all characteristic subgroups are in that series.
- So a sort of uniserial action of $G/\text{Fit}(G)$ on $\text{Fit}(G)$.
- We say G/N is the parent of G, and this forms a tree with the original $G/\text{Fit}(G)$ as a root (be careful of $\text{Fit}(G/N) \neq \text{Fit}(G)/N$).
- Surely these trees are infinite with short, periodic limbs all coming off one infinite branch which defines a nice uniserial action on a p-adic group of some sort?
Rewriting systems for perfect groups

A family of perfect groups

The groups are nice

Summary of the groups

- Natural definition linking the module and commutator structure of the Fitting subgroup
- Nice properties similar to coclass for p-groups
- Studied together as a tree, and the p-group case is very well studied
- Should expect entire family to be described by a single infinite group constructed from (very many) repeated extensions by simple modules
Key points for rewriting systems

- Old software fails due to inappropriate data-type (one cannot handle perfect groups, one cannot handle extensions)
- Rewriting systems generalize pc-presentation to more groups
- Handle extensions very well, especially by nilpotent subgroups
- Allows my “new” algorithm for efficient calculation of isomorphism classes, modeled after pc-presentation algorithm
- Much faster for the generalized coclass trees than the old software for permutation groups
What are rewriting systems?

- Formalize what it means to **simplify** in a finitely presented group.

- Elements of a group are represented as formal products of generators X, so an epimorphism $\phi : X^* \to G$ takes formal **words** and multiplies them.

- If $\phi(x) = \phi(y)$ represent the same element, which should we use, x or y, to represent the element?

- There is no general answer for finitely presented groups.

- Rewriting systems are a systematic answer to this question, and always exist for finite groups.
Definition of simplest words and rules

- Define an ordering on the free monoid, such that $x < y$ if $\phi(x) = \phi(y)$ and we prefer x to y.

- We should also prefer axb to ayb.

- Should be well-ordered, so there is a simplest word for every $\phi(x)$.

- Replacing ayb by axb is symbolized by the rule $y \mapsto x$.

- The official rules of the rewriting system are
 $$\{ y \mapsto x : \phi(y) = \phi(x), x < y, x \text{ and every proper subword of } y \text{ are simplest words } \}$$

- Necessary and sufficient to reduce any word to its simplest form.
Simplest words for extensions

If $\phi : X^* \rightarrow G/N$ and $\phi : Y^* \rightarrow N$ have been used to form rewriting systems for G/N and N, then we can define a $\phi : (X \cup Y)^* \rightarrow G$ as well.

Since $Ng = gN$, we can rewrite yx to xy' and group all the ys together.

Define an ordering on $(X \cup Y)^*$ so that $yx > xy'$. The standard way to do this is called the wreath product ordering.

The simplest words of G are then just xy where x is a simplest word for G/N and y is a simplest word for N.
Rules and tails for extensions

- The rules for G are
 1. The unchanged rules for N
 2. $yx \mapsto xy'$ describing the action of G/N on N
 3. Modified rules for G/N: $x \mapsto x'$ becomes $x \mapsto x'y$
 where y is the simplest word for $\phi(x')^{-1}\phi(x) \in N$

- The ys in the third type of rules are called tails.

- An extension is defined by:
 1. the rules of G/N,
 2. the rules of N,
 3. the action (rules) of G/N on N, and
 4. the tails, a function from $Rules(G/N)$ to N.
Rewriting systems for perfect groups

Using rewriting systems

An algorithm to find tails

Not all tails work

- Not every element of $N^{Rules}(G/N)$ defines a downward extension of G/N by N.

- Difference between final forms of words and simplest form

- Minimal word with non-simplest final form is ABC with $AB \mapsto R$ and $BC \mapsto S$ rules, but RC and AS don’t have a common final form

- If these overlaps are fine, then all words are fine.
Overlapping rules

- Most overlaps in an extension work out automatically:
 1. N with N work out, because N is a group
 2. N with action rules work out, because each element of G/N acts as an automorphism of N,
 3. Action rules with G/N work out, because the map from G/N to $\text{Aut}(N)$ is a homomorphism.
 4. N and G/N don’t overlap

- Only overlaps left are G/N with G/N and these must always agree on the G/N part; only the N part of the final form can differ.
 - All final forms are xy, with x and y simplest forms for G/N and N
 - In the extension, all final forms must be equal, so it defines a quotient N/K instead of N.

Jack Schmidt

Rewriting systems for perfect groups
Checking overlaps is linear algebra

- Need to simplify products in X^* as if they were in G.

- Applying $x_i \mapsto x'_i y_i$:

 \[
 ax_i b \rightarrow ax'_i y_i b \rightarrow ax'_i b y^b_i
 \]

 Where y^b_i is the simplest form for $\phi(y_i)\phi(b) \in N$.

- Many applications like this still give words of the form $xy_1^{m_1}y_2^{m_2} \ldots$ where y_i are tails, and m_i are in group ring of G/N

- Setting two final forms equal only requires the tails y_i to be in the kernels of the differences $m_i - m_i'$.

- Finding tails is just a giant null space calculation
Isomorphism testing is also easy

- Checking overlaps finds $Z^2(G/N, N)$, want $H^2 = Z^2/B^2$ instead

- Finding $B^2(G, V)$ is very easy; “Fox derivative”

- Still isomorphic groups that are not isomorphic as extensions; orbits of stabilizer of V in $Aut(G/N)$ on $H^2(G/N, N)$

- Algorithm constructs $Aut(G)$ while computing orbits and from first cohomology
Comparison with other algorithms

<table>
<thead>
<tr>
<th>Method</th>
<th>Factor Sets</th>
<th>Polycyclic</th>
<th>Subgroups</th>
<th>Rewriting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person</td>
<td>Schreier</td>
<td>Eick</td>
<td>Holt</td>
<td>Schmidt</td>
</tr>
<tr>
<td>Groups</td>
<td>Finite</td>
<td>Polycyclic</td>
<td>Finite</td>
<td>Finite</td>
</tr>
<tr>
<td>Input</td>
<td>AsSet</td>
<td>Pc-Pres</td>
<td>Perm</td>
<td>Rws</td>
</tr>
<tr>
<td>Output</td>
<td>AsSet</td>
<td>Pc-Pres</td>
<td>Fp-group</td>
<td>Rws</td>
</tr>
<tr>
<td>Time</td>
<td>poly(G)</td>
<td>polylog(G)</td>
<td>polylog(G/H)</td>
<td>polylog(G)</td>
</tr>
</tbody>
</table>

- Notice difference in input/output data types

- Subgroup chains can be added to the rewriting algorithm, but only reduces constants, not complexity
Conclusion

- Rewriting systems are abstractly nice for iterated extensions

- Polynomial algorithm for generation and isomorphism testing (requires arithmetic oracles, and has high startup cost).

- Will be available as a GAP package later this year

- Already used to compute coclass trees to depth 3 for all simple groups of order less than 1000, and very deep tree for $A_7 \mod 2$

- Some trees are finite! Some appear to have multiple trunks!

The End