Generalized coclass trees

Jack Schmidt

University of Kentucky

Zassenhaus 2007-03-17
Overview

- I am interested in a merger of the methods of finite p-groups and finite simple groups to understand perfect groups.

- In this talk I describe some of the success and difficulties in applying the coclass classification of p-groups to perfect groups.

- To continue the work of Holt & Plesken, more examples needed.

- To compute examples, new computational group theory was needed (described two weeks ago), and now I present the results of that theory.
Background in p-groups

- The coclass classification understands an infinite family of p-groups as approximate quotients of a single profinite group.

- The groups naturally organize into a tree, and the profinite group is the limit of the “trunk” or “main-line” of the tree.

- The error in the approximation are called the branches of the tree, and the perfect approximations are called the trunk.

- If G is a pro-p-group (or p-group), and G_n the nth term of the lower central series, then $\sup(\log_p([G : G_n]) - n)$ is the coclass.

- The graph has nodes finite p-groups and edges from G/G_n to G/G_{n+1} if $[G_n : G_{n+1}] = p$.
Background in perfect groups

- Small perfect groups (order less than 10^{10}) are repeated downward extensions of direct products of simple groups by normal p-subgroups

- Constructing these extensions required the development of new methods in computational group theory (described two weeks ago)

- I give some examples of how these groups are gathered into families, including calculations for groups, sometimes up to order $120 \cdot 5^{21} \approx 5.7E16$
Origin of p-coclass

- Definition due to Holt & Plesken, 1993

- p-groups poorly understood by order after years of effort

- p-groups well understood by coclass

- Holt & Plesken studied perfect groups over a series of papers and a book, but by chief length of the p-core

- They wanted a better understanding, and hoped p-coclass would be the correct method
The definition itself

- Fix a prime p, for a profinite group G define G_n to be the nth term in the lower central series of $O_p(G)$

- For a profinite group G,

$$\text{Coclass}_p(G) = \sup(\ell(O_p(G)/G_n) - n)$$

where $\ell(H)$ denotes the chief length, the length of a maximal chain of normal subgroups

- The coclass graph has nodes all groups and edges from G/G_n to G/G_{n+1} if G_n/G_{n+1} is a simple G-module
Basic results of Holt-Plesken

- Once G/G_n has the same coclass as G, G_n has a unique G-chief series

- If $G_1 = O_p(G)$ is soluble, then $G_1/t(G_1)$ is a p-adic space group, where $t(G_1)$ is the torsion subgroup

- ... and for some n, G acts p-uniserially on G_n, a $\hat{\mathbb{Z}}_p[G/G_n]$-lattice

- However, soluble $O_p(G)$ seems rare
More examples needed

- If there is some regular behaviour to describe, it will be recognized in special cases.

- Some infinite families already understood, but given an arbitrary coclass 0 group, how to fit it into a family?

- Holt & Plesken describe a very large family of examples coming from the natural representation of groups of Lie type over p-adic integers.

- Easy examples are $\lim_{\leftarrow} \text{SL}_2(\mathbb{Z}/p^i\mathbb{Z})$ which have $G/O_p(G) = \text{SL}(2, p)$ and lower central factors all the irreducible module p^3.
Some imperfect examples

- Even small groups are interesting; $G/O_p(G) = 1$ already covers the coclass classification of p-groups!

- Coclass trees with cyclic roots can be calculated somewhat abstractly ($C_n \mod p$ calculations mostly depend on $p \mod n$)

- Already $\text{Sym}(3) = \text{SL}(2,2)$ is interesting; its theory mod p just depends on $p \mod 3$, but $p = 2$ is very different from the other $2 \mod 3$

- Even $\text{SL}(2,3)$ has interesting properties, especially compared to perfect $\text{SL}(2,p)$
Generalized coclass trees

Examples

Imperfect examples
Generalized coclass trees

Examples

Imperfect examples

$SL_2(2) \mod 2$
Generalized coclass trees
Examples
Imperfect examples

$SL_2(2) \mod 5$
$SL_2(3) \mod 3$
I am working out all the details for $SL(2, \mathbb{Z}/p^2\mathbb{Z}) \mod p$ whose coclass graph is precisely a “main-line” with no branches or twigs.

However starting at $SL(2,p)$ the situation is much messier and appears full of branches, twigs, or even multiple main-lines.
Generalized coclass trees

Examples

Perfect examples

$L_2(5) \mod 2$

- N_1
- $4a$
- $4b$
- 1
- 1
- $4a$

$L_2(5) \mod 5$

- 3
- N_3
- 5
- 3
- 5
- 3
- 3
- 3
- 3
- 3
- 3

Jack Schmidt
$SL_2(5) \mod 5$
$SL_2(5) \mod 5$
Generalized coclass trees

Examples

Perfect examples

$L_3(2) \pmod{2}$
Generalized coclass trees

Examples

Perfect examples

$SL_2(7)$

$SL_2(7) \mod 7$
Generalized coclass trees

Examples

Perfect examples

$SL_2(7)$

$SL_2(7) \mod 7$