
Part IV

Week 3A: Representation Theory of Groups



Representation theory in a nutshell

Objects can be understood by their actions on simpler objects

Representation of finite groups studies actions of the group on
finite dimensional vector spaces

Representations of groups “linearizes” the group structure

Representations are occasionally required for deeper positive
characteristic results



Definitions
A representation of a finite group G is a group homomorphism
from G to the automorphism group of a finite dimensional
vector space V

The vector space with basis G has an obvious representation
where g takes the hth basis vector to hg. This is called the
regular representation.

In fact, it has a natural ring structure called the group ring, kG

A module is a ring homomorphism from kG to the
endomorphism ring of a finite dimensional vector space

Modules and representations are the same thing

Even simpler, we can just specify one invertible matrix per
generator of the group



Example

We give the example of S3 acting on a three dimensional space
as a permutation of the standard basis. Define
π : S3 → GL(3, k) by:

[1, 2, 3] 7→

1 . .
. 1 .
. . 1

 [2, 1, 3] 7→

 . 1 .
1 . .
. . 1

 [1, 3, 2] 7→

1 . .
. . 1
. 1 .



[3, 1, 2] 7→

 . . 1
1 . .
. 1 .

 [2, 3, 1] 7→

 . 1 .
. . 1
1 . .

 [3, 2, 1] 7→

 . . 1
. 1 .
1 . .



The module structure takes∑
g∈S3

αgeg ∈ kG 7→
∑
g∈S3

αgπ(g) ∈ End(k3)



Submodules

A submodule of π : kG → End(V ) is a restriction
σ : kG → End(W ) where σ(w) = π(w) ∈ W ≤ V for all w ∈ W .

Everyone abbreviates the name of π to “V” and the name of σ
to “W” to make it easier to talk about elements

If we form a basis of V by extending a basis of W then then the
matrices have the form

π(g) =

(
σ(g) .
B(g) C(g)

)

B(g) is “trash” but C(g) defines a representation
C : G → Aut(V/W ) called a quotient module



Direct sums
If V = U ⊕W with both U, W submodules, then write a basis
for V by concatenating bases for U and W .

In this basis we have the even simpler form

π(g) =

(
σ(g) .

. C(g)

)
where σ defines the submodule structure of U and C defines
the quotient module structure of V/U ∼= W

This is nicer because B(g) = 0 can be ignored. B(g) describes
the interaction of U and W and makes life difficult if it is nonzero

We say that V is decomposable or a direct sum in this case
where B(g) = 0

If U 6∼= W then virtually every question about V is simply the
disjoint union of the same question for U and W



Atomic power
Many areas of science try to break things down into pieces
which cannot be broken down further

A module is irreducible = simple if it has no nonzero proper
submodules

A module is indecomposable if it is not a direct sum of two
nonzero proper submodules

To understand the module theory means to understand the
indecomposable modules

This is possible for human minds iff the Sylow p-subgroup is
cyclic, dihedral, or p does not divide |G|

In the latter case, indecomposable = irreducible and the theory
is trivial (direct product of fields)

This is our case and why character theory usually suffices



Example again
Our representation of S3 on k3 is not irreducible, the subspace
spanned by 〈1, 1, 1〉 forms a submodule

We extend this to a basis

e1 = 〈1, 1, 1〉 e2 = 〈0, 1,−1〉 e3 = 〈−1, 0,−1〉

Let g = [2, 1, 3], then e1π(g) = e1,
e2π(g) = 〈1, 0,−1〉 = −2e1 − 2e2 − 3e3, and
e3π(g) = 〈0,−1,−1〉 = −2e1 + e2 − 2e3, so in the new basis

π(g) 7→

[
1
] [

. .
][

−2
−2

] [
−2 −3
1 −2

]
Submodule is top left, quotient module is bottom right, but
trashy bottom left is the cohomology



Example yet again

We know from theory the cohomology vanishes except for
p = 3, but we want a basis that shows this.

Let f1 = 〈1, 1, 1〉, f2 = 〈1,−1, 0〉, f3 = 〈0, 1,−1〉 which is a basis
if the characteristic is not 3, and we get the new matrices:

[1, 2, 3] 7→

1 . .
. 1 .
. . 1

 [2, 1, 3] 7→

1 . .
. -1 .
. 1 1

 [1, 3, 2] 7→

1 . .
. 1 1
. . -1


[3, 1, 2] 7→

1 . .
. -1 -1
. 1 .

 [2, 3, 1] 7→

1 . .
. . 1
. -1 -1

 [3, 2, 1] 7→

1 . .
. . -1
. -1 .



Notice the block structure σ(g) = [1] and C(g) the bottom right 2× 2
corner.



Module theory for the symmetric group
Roughly speaking we do exactly the same thing as we did with
characters:

1 Find the permutation representations on the cosets of Young
subgroups (row stabilizers of Young tableaux = centralizers of
Young tabloids)

2 Use Gram-Schmidt to break down the representations into direct
sums of previously known simple representations and one copy
of the unique new simple representation

Gram-Schmidt requires subtraction!

Subtracting modules is hard.

Polytabloids (=linear combinations of row-equivalence classes
of Young tableaux) form a natural basis of that unique new
simple module, called the Specht module



Conclusion

Representations = modules linearize a group

Irreducible = simple ones form building blocks

Indecomposables form the real buildings (or pyramids at least)

For us, indecomposable = irreducible

Breaking down representations into irreducibles is very hard, so
we need to use the polytabloids to form a basis

THE END
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