
Motivating problem Data types Algorithm Short rewriting systems Future work

Rewriting systems are
useful for finite groups

Jack Schmidt

University of Kentucky

2008-12-02

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Outline

Motivating problem (Ch. 0)

Examining available data types (Ch. 1)

Application to the motivating problem (Ch. 2)

Short rewriting systems for finite groups (Ch. 3)

Future work

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Ch. 0 Overview

There was an interesting problem, “classify all finite groups”

Gather finite groups into trees

Find the children from a parent

Find the leaves, including “infinite leaves”

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

From infinite to finite

One infinite (profinite) group describes infinitely many finite
groups

Some have only very nice finite quotients

We give three examples:

A familiar 2-group, the p-group version, and a perfect group

The last we want to understand, the first two we do

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Old example

The 2-adic dihedral group is the limit of the dihedral 2-groups:

G∞ =

{[
ζ i
2 v
0 1

]
: 0 ≤ i < 2, v ∈ Ẑ2

}
≤ GL(2, Ẑ2)

where ζ2 = −1

This group has very few normal subgroups of finite index:

3 of index two (we ignore), and all others are the terms of its
lower central series

The quotients are precisely the dihedral groups of order 2n, so
all but the first lower central factor are simple G∞ modules

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Fancier example

The p-adic “p”-hedral group is the limit of similar p-groups:

G∞ =

{[
ζ i
p v
0 1

]
: 0 ≤ i < p, v ∈ Ẑp−1

p

}
≤ GL(p, Ẑp)

where ζp ∈ GL(p − 1, Ẑp) has minimal polynomial xp−1
x−1

This group has few normal subgroups of finite index:

p + 1 of index p (we ignore), and all others are the terms of its
lower cental series

The quotients are groups of order pn and nilpotency class n − 1
so all but the first lower central factor are simple G∞ modules

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Super example 6000

The p-adic analytic Lie group is a limit of nice perfect groups:

G∞ =

{[
a b
c d

]
: a, b, c , d ∈ Ẑp, ad − bc = 1

}
≤ GL(2, Ẑp)

where p is a “good” prime for the algebraic group SL2 (p ≥ 5)

This group has few normal subgroups of finite index:

All are the terms of its p-core’s lower central series

The quotients are groups whose p-core’s lower central factors
are all simple G∞-modules

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

From finite to infinite

We can arrange groups into trees,
G/γn(Op(G)) is connected to G/γn+1(Op(G))
when the kernel is a simple G -module

Here γn+1(G) = [G , γn(G)] defines the lower central series

Trees are easily understood for dihedral, 3-hedral

21st century work on 5-hedral, and more p-groups, but “OK”

For the tree containing Z/pZ× Z/pZ
there is exactly one infinite branch

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Old example

G∞ is 2-adic dihedral group (Folklore)

Tree contains precisely those groups of
order 2n and nilpotency class n − 1

Not just dihedral, also quaternion and semi-dihedral

Quotient of a quaternion or semi-dihedral by last term
of lower central series is always dihedral

Simple, regular picture (2 steps of burn-in, period 1):

K4

Q8

D8

Q16

D16

Q32

D32

Q64

D64

. . .

. . .

. . .S64S32S16

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Fancier example

G∞ is 3-adic 3-hedral group (N. Blackburn, 1950s)

Tree contains precisely those groups of
order 3n and nilpotency class n − 1

Not just 3-hedral, also five or six more

Quotient of such by last term of lower central series is always a
3-hedral

Bigger, still regular picture (3 steps of burn-in, period 2):

3x3

3.9

3.(3x3)

3 more

3.(9x3)

5 more

3.(9x9)

6 more

3.(27x9)

5 more

3.(27x27)

. . .

. . .

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Super example 6000
G∞ = SL(2, Ẑ5) (Still not understood)

Tree contains precisely those groups G with
G/O5(G) ∼= SL(2, 5) and with each lower central factor of the
5-core a simple SL(2,5)-module

Unclear how many are missing

Partial tree shows only slight regularity (JS 2006):

SL(2, 5)

2 . . .

3 . . .

N3 . . .

4 . . .

5 . . .

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

SL(2, 5)

2

1

2

3

5

2

3 3 3

3

3

3

3

5

3

45

3

3

3

5

3

3

5

3

25

3

3

3

5

3

29

N3

3

3

3

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

SL(2,5)

4

5

2 2

3

3

4 4

3

3

1

5

3

5 5 5

3

5 5

3

5 5

3

15

5

3

5 5 5

3

5 5

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

The general case

For any p-group, at most finitely many infinite branches,
each one defines a very nice p-adic matrix group

For SL(p, Z/pZ), at least one infinite branch for SL(p, Ẑp)
Could be more? May not be matrix groups?

Infinite groups corresponding to p-groups are well understood

Infinite groups corresponding to finite groups are not

Other than the obvious nice examples, very few infinite
branches known, all sporadic and small dimensional

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Needed more examples

In order to understand the infinite branches, might help to just
draw longer branches

Before my work, trees for not-p-groups were very partial (see handout)

Figures on previous slides done with rewriting systems

Can easily be continued

However, hard to figure out which branches are “interesting”

Why did so many software packages fail?
Bad choice of data type!

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Ch. 1 Choice of data type important

Need to be able to compute with elements

Need to be able to specify group extensions in the tree

Permutation and matrix groups cannot handle the tree

Finitely presented groups cannot compute with elements

Rewriting systems can do it all!

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Available datatypes cannot handle the tree

Permutation and matrix groups are concrete

However for G∞ = Ẑp, the quotient at depth n requires at least
pn space

If G∞ can be represented as a matrix group over Ẑp, then depth
n quotient has an element of order pn

If not matrix group, then current mathematics is so weak in this
area that the infinite groups are useless

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Reminder from intro

Permutation groups do not work:

A permutation group with an element of order pn

moves at least pn points

Proof by looking at cycle decomposition

Matrix groups in characteristic p do not work:

Such a group with an element of order pn

has dimension at least pn−1 + 1

Proof by looking at minimal polynomial

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Matrix groups in cross characteristic

For a field of size q, where p does not divide q

An element of order pn has an irreducible minimal polynomial

Degree d of polynomial is such that pn divides qd − 1

Indeed d is the order of q mod pn

As n increases linearly, d increases exponentially

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

MG in CC: number theory

If vp(α− 1) = i ≥ gcd(p, 2), then the order of α modulo pn is
pn−i for all n ≥ i .

Take α = qk where k is the order of q modulo pgcd(p,2).

For p odd:

If α = 1 + piβ, then

αp = (1 + piβ)p = 1 + pi+1β + p2i+1 p−1
2 β2 + · · · =

1 + pi+1(β + p · γ)

αpn
= (1 + piβ)p

n
= 1 + pn+iβ + p2i+n pn−1

2 β2 + · · · =
1 + pn+i (β + p · γ)

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Matrix groups in characteristic zero

If q > 2, then any finite matrix group in characteristic zero
is a matrix group in characteristic q

Fancy proof given in references

Simple proof of weaker result (abstract algebra exercise)
Only prove for most q, field is the rationals

Only finitely many numbers as matrix entries

Only finitely many primes used in denominators

Choose some other prime q > 2

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

MG in C0: binomial theorem

If q doesn’t divide b, then a
b

mod q makes sense

Reduce the finite group mod q, what is the kernel?

Nontrivial element is I + qn · A where A is nonzero mod q

Element has finite order, but look at its k · qi th power:

(I + qn · A)k·qi

= I + qn+i(kA) + q2n+i(. . .)

This is not the identity mod qn+i+1 where q does not divide k

Contradiction, so no nontrivial element in kernel

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Rewriting systems for extensions

Rewriting system with n generators, r rules, maximum normal
form of length ` takes O(r · ` · log(n)) space.

To get G by combining G/N with N , R3 from R1 and R2:

n3 = n1 + n2

r3 = r1 + r2 + n1 · n2

`3 = `1 + `2

Compare this to group order (for Ch. 3)

|G | = |G/N | · |N |

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

On the tree

The root of the tree has some finite n1, r1, `1

The N that can occur are only finitely many, so max values of
n2 = M , r2 ≤ M2, `2 = Mp

So at depth k , one gets

n(k) ≤ n1 + kM
r(k) ≤ r1 + kM2 + k2n1M
`(k) ≤ `1 + kMp

All grow polynomially in k

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Example

Given the rewriting systems and actions:

G/N = 〈a, b : a3 7→ 1, b3 7→ 1, ba 7→ ab〉
N = 〈c : c3 7→ 1〉
ca = c , cb = c

We can form several rewriting systems for possible “G”:

〈a, b, c : a3 7→ 1, b3 7→ 1, ba 7→ ab, c3 7→ 1, ca 7→ ac , cb 7→ bc〉
〈a, b, c : a3 7→ c, b3 7→ 1, ba 7→ ab, c3 7→ 1, ca 7→ ac , cb 7→ bc〉
〈a, b, c : a3 7→ 1, b3 7→ 1, ba 7→ abc, c3 7→ 1, ca 7→ ac , cb 7→ bc〉
〈a, b, c : a3 7→ c, b3 7→ 1, ba 7→ abc, c3 7→ 1, ca 7→ ac , cb 7→ bc〉

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Ch. 2 Rewriting systems work

Important that the data-type is actually practical for tree
problem

Algorithm is natural, and published already in diverse contexts

No theoretical result due to two troublesome steps

Each is practical and well-studied, but only loose bounds proven

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Always linear algebra

Finding the children in any representation is mostly linear
algebra, called “cohomology”

Even doing the multiplciation table way (Schreier factor sets) is
linear algebra in huge dimensions with very sparse matrices

The rewriting way radically decreases dimension, but the
matrices are now black box (need to multiply in p-group to get
their action)

Trouble in bounding the black box

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Removing duplicates

No matter what method is used to get the cohomology, then
need to do orbit calculation to remove duplicates

Cost is exponential in dimension of cohomology

The dimension is mathematical property of the group

No way to “optimize” it

However, it is usually small (only once ≥ 6 in millions of examples

tried)

Best theoretical bound is polynomial growth of dimension

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Example

Here is a calculation of H2(G , V) for G = 3× 3 and V = 31:

G = 〈a, b : a3 7→ 1, b3 7→ 1, ba 7→ ab〉
C 2(G , V) = 〈z1, z2, z3〉

≈ 〈a, b, zi : a3 7→ z1, b3 7→ z2, ba 7→ abz3

z3
i 7→ 1, zia 7→ azi , zib 7→ bzi

z2z1 7→ z1z2, z3z2 7→ z2z3, z3z1 7→ z1z3〉
B2(G , V) = 0
Z 2(G , V) = C 2(G , V)

Note the rewriting system method was optimal, nothing wasted
below or above

There are 4 orbits. Reps are (0,0,0), (1,0,0), (0,0,1), (1,0,1)

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Grandchildren

Now take G to be the child with ζ = (0, 0, 1),

G = 〈a, b, c : a3 7→ 1, b3 7→ 1, ba 7→ abc ,
c3 7→ 1, ca 7→ ac , cb 7→ bc〉

C 2(G , V) = 〈z1, z2, z3, z4, z5, z6〉
≈ 〈a, b, c , zi : a3 7→ z1, b3 7→ z2, ba 7→ abcz3,

c3 7→ z4, ca 7→ acz5, cb 7→ bcz6,
z3
i 7→ 1, zia 7→ azi , zib 7→ bzi ,

zic 7→ czi , zjzi 7→ zizj (1 ≤ i < j ≤ 6)〉
B2(G , V) = 〈z3〉
Z 2(G , V) = 〈z1, z2, z3, z5, z6〉

Now there is one dimension “wasted” above and below

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

GC: Detail for ∂1

C 1(G , V) = V 3 and one calculates columnwise to get:

∂1 : C 1 → C 2 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0


Here each row corresponds to a generator, and each column to
a rule

For instance the column corresponding to the rule ba 7→ abc is
calculated by considering the rule for the generators
(av1, bv2, cv3) giving left hand side bv2av1 = ba · v1v2 and right
hand side av1bv2cv3 = abc · v1v2v3, for a difference of
(1, 1, 1)− (1, 1, 0) = (0, 0, 1) = v3.

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

GC: Detail for ∂2

The map ∂2 : C 2 → C 3 is a bit larger, calculated columnwise.

The column for (ba, a3, 1) corresponds to reducing b · a · a2:

b(aaa) 7→ bz1

(ba)aa 7→ abc(z3aa) 7→ ab(ca)a · z3

7→ abac(z5az3) 7→ aba(ca) · z3z5 7→ a(ba)ac · z3z
2
5

7→ aab(ca)c · z2
3 z2

5 7→ aa(ba)cc · z2
3 z0

5

7→ (aaa)bccc · z0
3 z0

5 7→ b(ccc) · z1 7→ b · z1z4

so the column is
(1, 0, 0, 1, 0, 0)− (1, 0, 0, 0, 0, 0) = (0, 0, 0, 1, 0, 0) = z4.

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Complexity
Notice the evaluation of ∂1 was just linear algebra

Cost was just the length of the left hand side plus the length of
the right hand side mat-vecs and vector adds

So O(` · n2), where n2 ≤ M and ` ≤ `1 + kMp

Each “7→” step in the evaluation of ∂2 was just linear algebra

Cost of each was at most the length of the word mat-vecs and
vector adds

How many 7→ are required? How long can the “abc” word be?

Best bound is subexponential (B.Höfling, unpublished, 2002)
O(exp(C · log(n)2))

In practice, often linear in k , the tree depth

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Ch. 3 General results

Rewriting system size scales with logarithm of group order if
one stays on a tree

What can we do in general? What about the root of the tree?

Can always handle group by composition factors

Can uniformly handle simple groups of Lie type

Combining, all finite groups have rewriting system of size
O(

√
|G |)

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Composition series

Notice: g3 = g1 + g2 generators and r3 = r1 + r2 + g1 · g2 rules

Independent of the cohomology and the action

Suffices to consider G/N × N , the direct product

Can break down entire composition series

Suffices to consider direct products of simple groups

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Reduction to simple groups

The following groups have short rewriting systems:

All simple groups, except possibly some sporadics

G × H, where G ,H short and |G |, |H| ≥ 24

G k , where G nonabelian simple and k ≥ 4

G , where G polycyclic, |G | ≥ 214

G × H, where G short, H polycyclic, |G | ≥ 24

G × H, where G short, |G | ≥ |H|2

G , where |G | ≥ max(k9, 214k3), k the product of the orders of
the simple exceptions

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

How to handle simple groups

Groups with (B , N) pairs have a natural rewriting system

If the (B , N) pair is split characteristic p satisfying the (weak)
commutator relations, then the rewriting system is short

Relies on having short Coxeter rewriting systems

Alternating groups are nearly Coxeter groups

Small sporadic groups have good enough “fake” split BN pairs,
up to order 106 so far

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

How to handle groups of Lie type

Groups of Lie type have a Bruhat decomposition:
Each g ∈ G has unique (x , h, w , x ′) ∈ U × T ×W × Uw :

g = x · h · ẇ · x ′

Roughly U = P , NG (P) = T n P , N = NG (T), W = N/T ,
Uw = P ∩ P ẇ

In GL and PSL, U is the upper uni-triangular matrices, T is the
diagonal, N are the monomial, W are the permutation
matrices, and Bruhat is LU decomposition

U , T are polycyclic, W is a finite Coxeter group,
so we have normal forms for the parts of g

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Bruhat decomposition as rewriting system

The Bruhat decomposition is natural and easily computable

Normal forms are not closed under contiguous subwords,
so this is not not a rewriting system

Easy to fix: use simple roots instead of positive roots

Instead of Bẇ1ẇ2Uw1w2 use Bẇ1X1ẇ2X2, equal as sets.

Is a rewriting system, as if G had normal subgroup B and
quotient group W

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

The Bruhat rules

The polycyclic rules of B using independent toral generators
and positive root generators, polynomial in the rank

The rules from the Weyl group, polynomial in the rank

The rules wixi(v)xj(1) for each simple root i , each “field
element” v , and each simple root j < i

Number of rules is now a polynomial in the rank and the
size of the field

Easily bounded by |W ||P| ≤
√
|G |, but really

O(qn) � O(
√
|G |), q field size, n number of positive roots

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Coxeter groups

Number of rules is quadratic in rank, order is factorial

Rules are simple, basically extended “exchange laws”

For alternating groups:

Use generating system
(n − 2, n, n − 1), (1, 2)(n − 1, n), . . . , (n − 3, n − 2)(n − 1)

Consider the last n− 3 generators as normal subgroup (Coxeter
group Sym(n − 2))

Number of rules is quadratic in n, order is factorial

Rules divide into about 10 families

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

A few low rank families

Family Gens Rules Order

A1 k + 2 q + (1
2
k2 + 3

2
k + 2) q3 − q

A2 3k + 4 q2 + (k + 2)q q8 − q6 − q5 + q3

+ (9
2
k2 + 21

2
k + 7)

2A2 3k + 3 q3 + (9
2
k2 + 15

2
k + 5) q8 − q6 + q5 − q3

G2 6k + 4 q5 + (9k + 6)q q14 − O(q12)
+ (18k2 + 16k + 7)

A3 6k + 6 q3 + 2q2 + (3k + 4)q q15 − O(q13)
+ (18k2 + 33k + 15)

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Small simple groups

G |G | n r φ
A(1, 4) 60 4 11 0.585

= A(1, 5) 3 9 0.537
= Alt(5) 3 11 0.585
= brute 2 6 0.438
A(1, 7) 168 3 11 0.468

= A(2, 2) 5 19 0.575
= brute 2 11 0.468
A(1, 9) 360 3 15 0.461

= Alt(6) 4 24 0.540
= brute 3 14 0.449
A(1, 8) 504 5 19 0.474

= brute 3 17 0.456
A(1, 11) 660 3 15 0.418
= brute 3 19 0.454
A(1, 13) 1092 2 17 0.405
= brute 2 25 0.461
A(1, 17) 2448 2 21 0.391
= brute 2 49 0.499

Alt(7) 2520 5 40 0.471
= brute 3 36 0.458

G |G | n r φ
A(1, 19) 3420 3 23 0.386
A(1, 16) 4080 6 32 0.417
A(2, 3) 5616 7 40 0.428

2A(2, 3) 6048 6 44 0.435
= brute 3 49 0.447
A(1, 23) 6072 3 27 0.379
A(1, 25) 7800 4 32 0.387

M11 7920 3 62 0.460
A(1, 27) 9828 5 38 0.396

Alt(8) 20160 6 61 0.414
= A3(2) 9 63 0.418

A2(4) 20160 10 42 0.377
. . .

M12 95040 5 303 0.498
J1 175560 5 192 0.436

Alt(9) 181440 7 86 0.367
M22 443520 4 150 0.386

J2 604800 6 219 0.405
Alt(10) 1814400 8 116 0.329

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

Future work: three main directions

Find all terminating, confluent rewriting systems for a group

Use algebraic variety ideas to compress rewriting systems of
groups of Lie type

Use theory to complete a few of the trees

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

FW: All rws

Simple group of order 60 is alternating, sporadic (B,N), and
several kinds of Lie group, but best rewriting system was found
through brute force.

Can we find all terminating, confluent rewriting systems for it?

New technique uses directed spanning trees to find all confluent
rewriting systems (≈ 30, 000 on two generators)

Current work: which ones are terminating?

Hard problem in CS for infinite languages

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

FW: Algebraic rws

Bruhat rewriting systems scale with field size

Program to generate them has size polynomial in Lie rank

Uses rational functions (algebraic variety morphisms) to specify
rules

Current work: can one do a confluence check directly from the
morphism

Can one execute chapter 2 in this context?

Does the field of the group need to match/not-match the field
of the module? The field of other composition factors in the
group?

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

FW: Complete the trees

Many trees partially calculated (all perfect p-roots of order up
to 1000, all to depth at least 3, some to depth 8)

A few trees seem well-behaved, but none were finite

Need to apply more modern modular representation theory

Actually only in last two years have small p-group p-roots been
done, though problem was officially solved in the 1980s

Techniques there may apply here, but with difficulty (periodic
patterns in p-group trees due to infinite group being soluble,
usually insoluble in my work)

Rewriting systems are useful for finite groups Jack Schmidt

Motivating problem Data types Algorithm Short rewriting systems Future work

The End

Rewriting systems are useful for finite groups Jack Schmidt

	
	Motivating problem
	From infinite to finite
	From finite to infinite

	Data types
	
	Old types don't work
	Rewriting systems work

	Algorithm
	
	Example
	Complexity

	Short rewriting systems
	
	Reduction to simple groups
	Simple groups
	

	Future work
	

