Data types

Algorithm

Short rewriting systems

Future work

Rewriting systems are useful for finite groups

Jack Schmidt

University of Kentucky

2008-12-02

Rewriting systems are useful for finite groups

Jack Schmidt

Motivating problem	Data types	Algorithm	Short rewriting systems	Future wo
00000000000	000000000	0000000	000000000	00000
— ••				

- Motivating problem (Ch. 0)
- Examining available data types (Ch. 1)
- Application to the motivating problem (Ch. 2)
- Short rewriting systems for finite groups (Ch. 3)
- Future work

Outline

Data types

Algorithm

Short rewriting systems

Future work

Ch. 0 Overview

- There was an interesting problem, "classify all finite groups"
- Gather finite groups into trees
- Find the children from a parent
- Find the leaves, including "infinite leaves"

Data types

Algorithm

Short rewriting systems

Future work

From infinite to finite

- One infinite (profinite) group describes infinitely many finite groups
- Some have only very nice finite quotients
- We give three examples:
- A familiar 2-group, the *p*-group version, and a perfect group
- The last we want to understand, the first two we do

Motivating problem	Data types	Algorithm	Short rewriting systems	Future work
0000000000	0000000000	0000000	000000000	00000
	_			

Old example

• The 2-adic dihedral group is the limit of the dihedral 2-groups:

$$G_{\infty} = \left\{ \begin{bmatrix} \zeta_2^i & \mathbf{v} \\ \mathbf{0} & 1 \end{bmatrix} : \mathbf{0} \le i < 2, \mathbf{v} \in \hat{\mathbb{Z}}_2 \quad \right\} \le \operatorname{GL}(2, \hat{\mathbb{Z}}_2)$$
where $\zeta_2 = -1$

- This group has very few normal subgroups of finite index:
- 3 of index two (we ignore), and all others are the terms of its lower central series
- The quotients are precisely the dihedral groups of order 2^n , so all but the first lower central factor are simple G_{∞} modules

 Motivating problem
 Data types
 Algorithm
 Short rewriting systems
 Future work

 0000000000
 000000000
 00000000
 00000000
 00000000
 00000000

Fancier example

• The *p*-adic "*p*"-hedral group is the limit of similar *p*-groups:

$$G_{\infty} = \left\{ \begin{bmatrix} \zeta_{p}^{i} & v \\ 0 & 1 \end{bmatrix} : 0 \le i < p, v \in \hat{\mathbb{Z}}_{p}^{p-1} \right\} \le \mathsf{GL}(p, \hat{\mathbb{Z}}_{p})$$

where $\zeta_{\rho} \in \mathsf{GL}(\rho-1,\hat{\mathbb{Z}}_{\rho})$ has minimal polynomial $rac{x^{\rho}-1}{x-1}$

- This group has few normal subgroups of finite index:
- *p* + 1 of index *p* (we ignore), and all others are the terms of its lower cental series
- The quotients are groups of order pⁿ and nilpotency class n − 1 so all but the first lower central factor are simple G_∞ modules

Data types

Algorithm

Short rewriting systems

Future work

Super example 6000

• The *p*-adic analytic Lie group is a limit of nice perfect groups:

$$G_{\infty} = \left\{ egin{bmatrix} a & b \ c & d \end{bmatrix} : a, b, c, d \in \hat{\mathbb{Z}}_p, ad - bc = 1
ight\} \leq \mathsf{GL}(2, \hat{\mathbb{Z}}_p)$$

where p is a "good" prime for the algebraic group SL_2 $(p \ge 5)$

- This group has few normal subgroups of finite index:
- All are the terms of its *p*-core's lower central series
- The quotients are groups whose *p*-core's lower central factors are all simple G_∞-modules

Data types

Algorithm

Short rewriting systems

Future work

From finite to infinite

- We can arrange groups into trees, G/γ_n(O_p(G)) is connected to G/γ_{n+1}(O_p(G)) when the kernel is a simple G-module
- Here $\gamma_{n+1}(G) = [G, \gamma_n(G)]$ defines the lower central series
- Trees are easily understood for dihedral, 3-hedral
- 21st century work on 5-hedral, and more *p*-groups, but "OK"
- For the tree containing Z/pZ × Z/pZ there is exactly one infinite branch

Data types

Algorithm

Short rewriting systems

Future work

Old example

- G_{∞} is 2-adic dihedral group (Folklore)
- Tree contains precisely those groups of order 2ⁿ and nilpotency class n - 1
- Not just dihedral, also quaternion and semi-dihedral
- Quotient of a quaternion or semi-dihedral by last term of lower central series is always dihedral
- Simple, regular picture (2 steps of burn-in, period 1):

Data types

Algorithm

Short rewriting systems

Future work

Fancier example

- G_{∞} is 3-adic 3-hedral group (N. Blackburn, 1950s)
- Tree contains precisely those groups of order 3ⁿ and nilpotency class n - 1
- Not just 3-hedral, also five or six more
- Quotient of such by last term of lower central series is always a 3-hedral
- Bigger, still regular picture (3 steps of burn-in, period 2):

Data types

Algorithm

Short rewriting systems

Future work

Super example 6000

- $G_{\infty} = SL(2, \hat{\mathbb{Z}}_5)$ (Still not understood)
- Tree contains precisely those groups G with $G/O_5(G) \cong SL(2,5)$ and with each lower central factor of the 5-core a simple SL(2,5)-module
- Unclear how many are missing
- Partial tree shows only slight regularity (JS 2006):

Data types

Algorithm

Short rewriting systems

Future work

The general case

- For any *p*-group, at most finitely many infinite branches, each one defines a very nice *p*-adic matrix group
- For SL(p, Z/pZ), at least one infinite branch for SL(p, Ẑ_p) Could be more? May not be matrix groups?
- Infinite groups corresponding to *p*-groups are well understood
- Infinite groups corresponding to finite groups are not
- Other than the obvious nice examples, very few infinite branches known, all sporadic and small dimensional

Motivating problem ○○○○○○○○○● Data types

Algorithm

Short rewriting systems

Future work

Needed more examples

- In order to understand the infinite branches, might help to just draw longer branches
- Before my work, trees for not-*p*-groups were very partial (see handout)
- Figures on previous slides done with rewriting systems
- Can easily be continued
- However, hard to figure out which branches are "interesting"
- Why did so many software packages fail? Bad choice of data type!

Data types

Algorithm

Short rewriting systems

Future work

Ch. 1 Choice of data type important

- Need to be able to compute with elements
- Need to be able to specify group extensions in the tree
- Permutation and matrix groups cannot handle the tree
- Finitely presented groups cannot compute with elements
- Rewriting systems can do it all!

Data types

Algorithm

Short rewriting systems

Future work

Available datatypes cannot handle the tree

- Permutation and matrix groups are concrete
- However for $G_{\infty} = \hat{\mathbb{Z}}_{p}$, the quotient at depth *n* requires at least p^{n} space
- If G_{∞} can be represented as a matrix group over $\hat{\mathbb{Z}}_p$, then depth n quotient has an element of order p^n
- If not matrix group, then current mathematics is so weak in this area that the infinite groups are useless

Data types

Algorithm

Short rewriting systems

Future work

Reminder from intro

- Permutation groups do not work:
- A permutation group with an element of order pⁿ moves at least pⁿ points
- Proof by looking at cycle decomposition
- Matrix groups in characteristic *p* do not work:
- Such a group with an element of order pⁿ has dimension at least pⁿ⁻¹ + 1
- Proof by looking at minimal polynomial

Data types

Algorithm

Short rewriting systems

Future work

Matrix groups in cross characteristic

- For a field of size q, where p does not divide q
- An element of order p^n has an irreducible minimal polynomial
- Degree d of polynomial is such that p^n divides $q^d 1$
- Indeed d is the order of $q \mod p^n$
- As *n* increases linearly, *d* increases exponentially

Data types

Algorithm

Short rewriting systems

Future work

MG in CC: number theory

- If $v_p(\alpha 1) = i \ge \gcd(p, 2)$, then the order of α modulo p^n is p^{n-i} for all $n \ge i$.
- Take $\alpha = q^k$ where k is the order of q modulo $p^{\text{gcd}(p,2)}$.
- For *p* odd:

• If
$$\alpha = 1 + p^{i}\beta$$
, then
• $\alpha^{p} = (1 + p^{i}\beta)^{p} = 1 + p^{i+1}\beta + p^{2i+1}\frac{p-1}{2}\beta^{2} + \dots = 1 + p^{i+1}(\beta + p \cdot \gamma)$
• $\alpha^{p^{n}} = (1 + p^{i}\beta)^{p^{n}} = 1 + p^{n+i}\beta + p^{2i+n}\frac{p^{n}-1}{2}\beta^{2} + \dots = 1 + p^{n+i}(\beta + p \cdot \gamma)$

Future work

Matrix groups in characteristic zero

- If q > 2, then any finite matrix group in characteristic zero is a matrix group in characteristic q
- Fancy proof given in references
- Simple proof of weaker result (abstract algebra exercise) Only prove for most *q*, field is the rationals
- Only finitely many numbers as matrix entries
- Only finitely many primes used in denominators
- Choose some other prime q > 2

Data types

Algorithm

Short rewriting systems

Future work

MG in C0: binomial theorem

- If q doesn't divide b, then $\frac{a}{b} \mod q$ makes sense
- Reduce the finite group mod q, what is the kernel?
- Nontrivial element is $I + q^n \cdot A$ where A is nonzero mod q
- Element has finite order, but look at its $k \cdot q^i$ th power:

$$(I+q^n\cdot A)^{k\cdot q^i}=I+q^{n+i}(kA)+q^{2n+i}(\dots)$$

- This is not the identity mod q^{n+i+1} where q does not divide k
- Contradiction, so no nontrivial element in kernel

Data types

Algorithm

Short rewriting systems

Future work

Rewriting systems for extensions

- Rewriting system with n generators, r rules, maximum normal form of length ℓ takes O(r · ℓ · log(n)) space.
- To get G by combining G/N with N, R_3 from R_1 and R_2 :

$$n_3 = n_1 + n_2 r_3 = r_1 + r_2 + n_1 \cdot n_2 \ell_3 = \ell_1 + \ell_2$$

• Compare this to group order (for Ch. 3)

$$|G| = |G/N| \cdot |N|$$

- On the tree
- The root of the tree has some finite n_1 , r_1 , ℓ_1
- The N that can occur are only finitely many, so max values of $n_2 = M$, $r_2 \leq M^2$, $\ell_2 = Mp$
- So at depth *k*, one gets

$$\begin{array}{rcl} n(k) & \leq & n_1 + kM \\ r(k) & \leq & r_1 + kM^2 + k^2 n_1M \\ \ell(k) & \leq & \ell_1 + kMp \end{array}$$

• All grow polynomially in k

Motivating problem	Data types ○○○○○○○○●	Algorithm 00000000	Short rewriting systems	Future work
Example				

• Given the rewriting systems and actions:

$$egin{aligned} G/\mathcal{N} &= \langle a,b:a^3 \mapsto 1, b^3 \mapsto 1, ba \mapsto ab
angle \ \mathcal{N} &= \langle c:c^3 \mapsto 1
angle \ c^a &= c, c^b = c \end{aligned}$$

• We can form several rewriting systems for possible "G":

$$\begin{array}{l} \langle a, b, c : a^3 \mapsto 1, b^3 \mapsto 1, ba \mapsto ab, c^3 \mapsto 1, ca \mapsto ac, cb \mapsto bc \rangle \\ \langle a, b, c : a^3 \mapsto \mathbf{c}, b^3 \mapsto 1, ba \mapsto ab, c^3 \mapsto 1, ca \mapsto ac, cb \mapsto bc \rangle \\ \langle a, b, c : a^3 \mapsto 1, b^3 \mapsto 1, ba \mapsto ab\mathbf{c}, c^3 \mapsto 1, ca \mapsto ac, cb \mapsto bc \rangle \\ \langle a, b, c : a^3 \mapsto \mathbf{c}, b^3 \mapsto 1, ba \mapsto ab\mathbf{c}, c^3 \mapsto 1, ca \mapsto ac, cb \mapsto bc \rangle \end{array}$$

Data types

 Short rewriting systems

Future work

Ch. 2 Rewriting systems work

- Important that the data-type is actually practical for tree problem
- Algorithm is natural, and published already in diverse contexts
- No theoretical result due to two troublesome steps
- Each is practical and well-studied, but only loose bounds proven

Data types

Algorithm

Short rewriting systems

Future work

Always linear algebra

- Finding the children in any representation is mostly linear algebra, called "cohomology"
- Even doing the multiplciation table way (Schreier factor sets) is linear algebra in huge dimensions with very sparse matrices
- The rewriting way radically decreases dimension, but the matrices are now black box (need to multiply in *p*-group to get their action)
- Trouble in bounding the black box

Data types

Algorithm

Short rewriting systems

Future work

Removing duplicates

- No matter what method is used to get the cohomology, then need to do orbit calculation to remove duplicates
- Cost is exponential in dimension of cohomology
- The dimension is mathematical property of the group
- No way to "optimize" it
- However, it is usually small (only once \geq 6 in millions of examples tried)
- Best theoretical bound is polynomial growth of dimension

Motivating problem	Data types	Algorithm	Short rewriting systems	Future work
Example				

• Here is a calculation of $H^2(G, V)$ for $G = 3 \times 3$ and $V = 3^1$:

$$\begin{array}{rcl} G &=& \langle a,b:a^3\mapsto 1,\ b^3\mapsto 1,\ ba\mapsto ab\rangle\\ C^2(G,V) &=& \langle z_1,z_2,z_3\rangle\\ &\approx& \langle a,b,z_i:a^3\mapsto z_1,\ b^3\mapsto z_2,\ ba\mapsto abz_3\\ && z_i^3\mapsto 1,\ z_ia\mapsto az_i,\ z_ib\mapsto bz_i\\ && z_2z_1\mapsto z_1z_2,\ z_3z_2\mapsto z_2z_3,\ z_3z_1\mapsto z_1z_3\rangle\\ B^2(G,V) &=& 0\\ Z^2(G,V) &=& C^2(G,V) \end{array}$$

- Note the rewriting system method was optimal, nothing wasted below or above
- There are 4 orbits. Reps are (0,0,0), (1,0,0), (0,0,1), (1,0,1)

Data types

Algorithm

Short rewriting systems

Future work

Grandchildren

• Now take G to be the child with $\zeta = (0, 0, 1)$,

$$\begin{array}{rcl} G &=& \langle a,b,c:a^3\mapsto 1,\ b^3\mapsto 1,\ ba\mapsto abc,\\ && c^3\mapsto 1,\ ca\mapsto ac,\ cb\mapsto bc \rangle\\ C^2(G,V) &=& \langle z_1,z_2,z_3,z_4,z_5,z_6\rangle\\ &\approx& \langle a,b,c,z_i:a^3\mapsto z_1,\ b^3\mapsto z_2,\ ba\mapsto abcz_3,\\ && c^3\mapsto z_4,\ ca\mapsto acz_5,\ cb\mapsto bcz_6,\\ && z_i^3\mapsto 1,\ z_ia\mapsto az_i,\ z_ib\mapsto bz_i,\\ && z_ic\mapsto cz_i,\ z_jz_i\mapsto z_iz_{j(1\leq i< j\leq 6)}\rangle\\ B^2(G,V) &=& \langle z_3\rangle\\ Z^2(G,V) &=& \langle z_1,z_2,z_3,z_5,z_6\rangle\end{array}$$

Now there is one dimension "wasted" above and below

Data types

Algorithm

Short rewriting systems

Future work

GC: Detail for ∂^1

• $C^1(G, V) = V^3$ and one calculates columnwise to get:

Here each row corresponds to a generator, and each column to a rule

For instance the column corresponding to the rule ba → abc is calculated by considering the rule for the generators
 (av₁, bv₂, cv₃) giving left hand side bv₂av₁ = ba · v₁v₂ and right
 hand side av₁bv₂cv₃ = abc · v₁v₂v₃, for a difference of
 (1, 1, 1) - (1, 1, 0) = (0, 0, 1) = v₃.

Data types

Algorithm

Short rewriting systems

Future work

GC: Detail for ∂^2

• The map $\partial^2 : C^2 \to C^3$ is a bit larger, calculated columnwise.

• The column for $(ba, a^3, 1)$ corresponds to reducing $b \cdot a \cdot a^2$:

$$b(aaa) \mapsto b\overline{z_1}$$

$$(ba)aa \mapsto \overline{abc(z_3}aa) \mapsto ab(c\overline{a})\overline{a \cdot z_3}$$

$$\mapsto ab\overline{ac(z_5}az_3) \mapsto aba(c\overline{a}) \cdot z_3z_5 \mapsto a(ba)\overline{ac} \cdot z_3z_5^2$$

$$\mapsto a\overline{ab(ca)}c \cdot z_3^2 z_5^2 \mapsto aa(b\overline{a})cc \cdot z_3^2 z_5^0$$

$$\mapsto (aa\overline{a})bccc \cdot z_3^0 z_5^0 \mapsto b(ccc) \cdot z_1 \mapsto b \cdot z_1 z_4$$

so the column is $(1,0,0,1,0,0) - (1,0,0,0,0,0) = (0,0,0,1,0,0) = z_4.$

 Motivating problem
 Data types
 Algorithm
 Short

 00000000000
 000000000
 0000000
 000000

Short rewriting systems

Future work

Complexity

- Notice the evaluation of ∂^1 was just linear algebra
- Cost was just the length of the left hand side plus the length of the right hand side mat-vecs and vector adds
- So $O(\ell \cdot n_2)$, where $n_2 \leq M$ and $\ell \leq \ell_1 + kMp$
- Each " \mapsto " step in the evaluation of ∂^2 was just linear algebra
- Cost of each was at most the length of the word mat-vecs and vector adds
- How many \mapsto are required? How long can the "abc" word be?
- Best bound is subexponential (B.Höfling, unpublished, 2002) $O(\exp(C \cdot \log(n)^2))$
- In practice, often linear in k, the tree depth

Data types

Algorithm

Short rewriting systems

Future work

Ch. 3 General results

- Rewriting system size scales with logarithm of group order if one stays on a tree
- What can we do in general? What about the root of the tree?
- Can always handle group by composition factors
- Can **uniformly** handle simple groups of Lie type
- Combining, all finite groups have rewriting system of size $O(\sqrt{|G|})$

Algorithm

Short rewriting systems

Future work

Composition series

- Notice: $g_3 = g_1 + g_2$ generators and $r_3 = r_1 + r_2 + g_1 \cdot g_2$ rules
- Independent of the cohomology and the action
- Suffices to consider $G/N \times N$, the **direct product**
- Can break down entire composition series
- Suffices to consider direct products of simple groups

Data types

Algorithm

Short rewriting systems

Future work

Reduction to simple groups

- The following groups have short rewriting systems:
 - All simple groups, except possibly some sporadics
 - $G \times H$, where G, H short and $|G|, |H| \ge 2^4$
 - G^k , where G nonabelian simple and $k \ge 4$
 - G, where G polycyclic, $|G| \ge 2^{14}$
 - $G \times H$, where G short, H polycyclic, $|G| \ge 2^4$
 - G imes H, where G short, $|G| \ge |H|^2$
 - G, where |G| ≥ max(k⁹, 2¹⁴k³), k the product of the orders of the simple exceptions

Data types

Algorithm

Short rewriting systems

Future work

How to handle simple groups

- Groups with (B, N) pairs have a natural rewriting system
- If the (B, N) pair is split characteristic p satisfying the (weak) commutator relations, then the rewriting system is short
- Relies on having short Coxeter rewriting systems
- Alternating groups are nearly Coxeter groups
- Small sporadic groups have good enough "fake" split BN pairs, up to order 10⁶ so far

Data types

Algorithm

Short rewriting systems

Future work

How to handle groups of Lie type

Groups of Lie type have a Bruhat decomposition:
 Each g ∈ G has unique (x, h, w, x') ∈ U × T × W × U_w:

$$g = x \cdot h \cdot \dot{w} \cdot x'$$

- Roughly U = P, $N_G(P) = T \ltimes P$, $N = N_G(T)$, W = N/T, $U_w = P \cap P^{\dot{w}}$
- In GL and PSL, U is the upper uni-triangular matrices, T is the diagonal, N are the monomial, W are the permutation matrices, and Bruhat is LU decomposition
- *U*, *T* are polycyclic, *W* is a finite Coxeter group, so we have **normal forms** for the parts of *g*

Bruhat decomposition as rewriting system

- The Bruhat decomposition is natural and easily computable
- Normal forms are not closed under contiguous subwords, so this is not not a rewriting system
- Easy to fix: use simple roots instead of positive roots
- Instead of $B\dot{w}_1\dot{w}_2U_{w_1w_2}$ use $B\dot{w}_1X_1\dot{w}_2X_2$, equal as sets.
- Is a rewriting system, as if G had normal subgroup B and quotient group W

Data types

Algorithm

Short rewriting systems

Future work

The Bruhat rules

- The polycyclic rules of *B* using independent toral generators and positive root generators, **polynomial in the rank**
- The rules from the Weyl group, polynomial in the rank
- The rules $w_i x_i(v) x_j(1)$ for each simple root *i*, each "field element" *v*, and each simple root j < i
- Number of rules is now a polynomial in the rank and the size of the field
- Easily bounded by $|W||P| \le \sqrt{|G|}$, but really $O(q^n) \ll O(\sqrt{|G|})$, q field size, n number of positive roots

 Motivating problem
 Data types
 Algorithm
 Short rewriting systems
 Future work

 00000000000
 000000000
 00000000
 00000000
 00000000
 00000000

Coxeter groups

- Number of rules is quadratic in rank, order is factorial
- Rules are simple, basically extended "exchange laws"
- For alternating groups:
 - Use generating system $(n-2, n, n-1), (1, 2)(n-1, n), \dots, (n-3, n-2)(n-1)$
 - Consider the last n-3 generators as normal subgroup (Coxeter group Sym(n-2))
 - Number of rules is quadratic in *n*, order is factorial
 - Rules divide into about 10 families

Data types

Algorithm

Short rewriting systems

Future work

A few low rank families

Family	Gens	Rules	Order
A_1	k+2	$q + (\frac{1}{2}k^2 + \frac{3}{2}k + 2)$	q^3-q
<i>A</i> ₂	3 <i>k</i> + 4	$q^2 + (k+2)q + (rac{9}{2}k^2 + rac{21}{2}k + 7)$	$q^8 - q^6 - q^5 + q^3$
${}^{2}A_{2}$	3k + 3	$q^3 + (\frac{9}{2}k^2 + \frac{15}{2}k + 5)$	$q^8 - q^6 + q^5 - q^3$
G ₂	6 <i>k</i> + 4	$q^5+(9k+6)q\ +(18k^2+16k+7)$	$q^{14} - O(q^{12})$
A ₃	6 <i>k</i> + 6	$egin{array}{l} q^3+2q^2+(3k+4)q\ +(18k^2+33k+15) \end{array}$	$q^{15} - O(q^{13})$

Data types

Algorithm

Short rewriting systems

Future work

Small simple groups

G	G	n	r	ϕ	G	G	n	r	ϕ
A(1,4)	60	4	11	0.585	A(1, 19)	3420	3	23	0.386
= A(1,5)		3	9	0.537	A(1, 16)	4080	6	32	0.417
= Alt(5)		3	11	0.585	A(2,3)	5616	7	40	0.428
= brute		2	6	0.438	$^{2}A(2,3)$	6048	6	44	0.435
A(1,7)	168	3	11	0.468	= brute		3	49	0.447
= A(2,2)		5	19	0.575	A(1,23)	6072	3	27	0.379
= brute		2	11	0.468	A(1, 25)	7800	4	32	0.387
A(1,9)	360	3	15	0.461	M ₁₁	7920	3	62	0.460
= Alt(6)		4	24	0.540	A(1, 27)	9828	5	38	0.396
= brute		3	14	0.449	Alt(8)	20160	6	61	0.414
A(1,8)	504	5	19	0.474	$= A_3(2)$		9	63	0.418
= brute		3	17	0.456	$A_2(4)$	20160	10	42	0.377
A(1, 11)	660	3	15	0.418					
= brute		3	19	0.454	M ₁₂	95040	5	303	0.498
A(1, 13)	1092	2	17	0.405	J_1	175560	5	192	0.436
= brute		2	25	0.461	Alt(9)	181440	7	86	0.367
A(1, 17)	2448	2	21	0.391	M ₂₂	443520	4	150	0.386
= brute		2	49	0.499	J_2	604800	6	219	0.405
Alt(7)	2520	5	40	0.471	Alt(10)	1814400	8	116	0.329
= brute		3	36	0.458	· · ·				

Rewriting systems are useful for finite groups

Data types

Algorithm

Short rewriting systems

Future work

Future work: three main directions

• Find all terminating, confluent rewriting systems for a group

• Use algebraic variety ideas to compress rewriting systems of groups of Lie type

• Use theory to complete a few of the trees

- FW: All rws
- Simple group of order 60 is alternating, sporadic (B,N), and several kinds of Lie group, but best rewriting system was found through brute force.
- Can we find all terminating, confluent rewriting systems for it?
- New technique uses directed spanning trees to find all confluent rewriting systems (\approx 30,000 on two generators)
- Current work: which ones are terminating?
- Hard problem in CS for **infinite** languages

Data types

Algorithm

Short rewriting systems

Future work

FW: Algebraic rws

- Bruhat rewriting systems scale with field size
- Program to generate them has size polynomial in Lie rank
- Uses rational functions (algebraic variety morphisms) to specify rules
- Current work: can one do a confluence check directly from the morphism
- Can one execute chapter 2 in this context?
- Does the field of the group need to match/not-match the field of the module? The field of other composition factors in the group?

Data types

Algorithm

Short rewriting systems

Future work

FW: Complete the trees

- Many trees partially calculated (all perfect *p*-roots of order up to 1000, all to depth at least 3, some to depth 8)
- A few trees seem well-behaved, but none were finite
- Need to apply more modern modular representation theory
- Actually only in last two years have small *p*-group *p*-roots been done, though problem was officially solved in the 1980s
- Techniques there may apply here, but with difficulty (periodic patterns in *p*-group trees due to infinite group being soluble, usually insoluble in my work)

Motivating problem	Data types	Algorithm	Short rewriting systems	Future work
00000000000	0000000000	0000000	000000000	00000

The End