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Abstract
This is a toy example to illustrate some of the techniques of fusion and

transfer as described in Gorenstein’s text Finite Groups. Finite groups with a
unique subgroup of order p (p an odd prime) are classified in terms of a cyclic
p′-extension of relatively simple combinatorial data.

This note is intended to address a slightly misstated exercise in somewhat more
detail and to be a toy example of the theory of fusion. Likely this classification
was still child’s play in the 1930s, but it does give a clean, explicit description of
a reasonably natural sounding class. The original misstated exercise was to show
that if a finite group had a unique subgroup of order p, for some prime p, then that
subgroup was central. As the non-abelian group of order 6 and p = 3 shows, this
is an absurd claim. However, the groups that do occur break down naturally into
the central case and a cyclic extension. The central case is elegantly described by
Burnside’s N/C theorem. Notation and concepts are as in [1], especially chapters 5
and 7.

Definition 1. A finite group is called p-nilpotent if it has a normal subgroup of
order coprime to p and index a power of p (p some prime). A finite group that is
not p-nilpotent is called p-length 1 if it has a normal p-nilpotent subgroup of index
coprime to p.

We will “p-nilpotent or p-length 1” to just “p-length at most 1”. The name p-
nilpotent comes from several important similarities of p-nilpotent groups to nilpo-
tent groups, the easiest to describe is simply that a finite group is nilpotent if and
only if it is p-nilpotent for all primes p. Another way to describe p-nilpotent groups
is as those groups which have a normal p-complement. These groups have been
studied for more than 100 years, and are involved in one of the earliest results in
“fusion”:

Lemma 2 (Burnside). If a Sylow p-subgroup is centralized by its normalizer, then
the whole group is p-nilpotent.

Proof. This is [1, Th. 7.4.3, p.252].

In fact modern methods (as in 1930s) have improved Burnside’s result to:

Lemma 3. If a Sylow p-subgroup P of G is abelian and N = NG(P ), then P =
(P ∩N ′)× (P ∩ Z(N)).

Proof. This is [1, Th. 7.4.4, p.253].

We also need the well-known classification in case G is itself a p-group:
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Lemma 4. If G is a p-group with a unique subgroup of order p for an odd prime p,
then G is cyclic.

Proof. This is [1, Th. 5.4.10.ii, p.199].

We can put these together to get:

Proposition 5. If G has a unique subgroup of order p for an odd prime p, then
either G is p-nilpotent, or Op(G) ∩ Z(G) = 1. In particular, CG(Ω(Op(G))) is
p-nilpotent.

Proof. By lemma 4, the Sylow p-subgroup P of G is cyclic, since it too has only
one subgroup of order p. By lemma 3, P decomposes as a direct product of P ∩N ′

and P ∩Z(N). Since a cyclic p-group is directly indecomposable, either P 6 Z(N)
or P ∩ Z(N) = 1. In the former case, lemma 2 shows that G is p-nilpotent. In the
latter case one has that Op(G) ∩ Z(G) = P ∩ Z(G) 6 P ∩ Z(N) = 1. The final
statement follows since Ω(Op(G)), the unique subgroup of order p, is central, so
one is in the first case.

We can turn this into a structure theorem in the p-nilpotent case:

Proposition 6. For each odd prime p, there is a 1-1 correspondence between iso-
morphism classes of finite p-nilpotent groups with a unique subgroup of order p
and triples (Q,α, n) where Q is a representative of an isomorphism class of finite
groups of odd order, α is a conjugacy class representative of a class of p-elements
in Aut(Q), and n is a positive integer.

Proof. Given a p-nilpotent group G with a unique subgroup Ω(Op(G)) of order p,
let Q = Op′(G) be the largest normal subgroup of order coprime to p, and let P be
a Sylow p-subgroup and complement to Q. By lemma 4 P is cyclic, say P = 〈x〉.
Hence there is some automorphism α ∈ Aut(Q) of order pk for some nonnegative
integer k such that gx = gα for all g ∈ Q. Since [Q,Ω(Op(G)))] 6 Q∩Ω(Op(G)) = 1,
the order of x must be strictly larger than the order of α as the powers of x of order
p centralize Q. Let n be the positive integer defined by the order of x being equal to
pk+n. This constitutes the map from isomorphism classes of G to triples (Q,α, n).
Clearly it is well-defined, as the choices commute with isomorphisms.

Given a triple (Q,α, n) with α of order pk, define G to be the semi-direct product
a Q with a cyclic group P = 〈x〉 of order pk+n acting on Q by gx = gα for all g ∈ Q.
This constitutes the map from triples to isomorphism classes of groups. Again, the
choices of conjugacy result in isomorphic groups. It is also clear that such a group
G is p-nilpotent, and since the Sylow p-subgroup P is cyclic and since Ω(P ) is
normal in G, it is clearly the unique subgroup of order p in G. Hence the map is
well-defined.

It remains to check that the two maps are inverses of each other, but this is
clear.

This is sufficient to prove the structure theorem:

Theorem 7. Every finite group with a unique subgroup of order p is a extension of
a normal p-nilpotent subgroup with a unique subgroup of order p by a cyclic quotient
of order dividing p − 1 and acting faithfully, and conversely every such extension
has a unique subgroup of order p. In particular, every such group is of p-length at
most 1.
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Proof. This is just because CG(Ω(Op(G))) is a normal, p-nilpotent subgroup with
a unique subgroup of order p, and G/CG(Ω(Op(G))) is isomorphic to a subgroup
of the automorphism group of a group of order p, which is cyclic of order p − 1.
Conversely, the extension still normalizes Ω(P ) for the cyclic Sylow p-subgroup P .
The final statement is clear.

It is important to notice that such groups need not be p-nilpotent, and they may
or may not have non-identity normal subgroups of order coprime to p, so that there
are no obvious simplifications to the structure theorem.
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