
Commutator formulas

Jack Schmidt

This expository note mentions some interesting formulas using commutators. It
touches on Hall’s collection process and the associated Hall polynomials. It gives an
alternative expression that is linear in the number of commutators and shows how to
find such a formula using staircase diagrams. It also shows the shortest possible such
expression.

Future versions could touch on isoperimetric inequalities in geometric group theory,
powers of commutators and Culler’s identity as well as its effect on Schur’s inequality
between [G : Z(G)] and |G′|.

1 Powers of products versus products of powers

In an abelian group one has (xy)n = xnyn so in a general group one has (xy)n =
xnyndn(x, y) for some product of commutators dn(x, y). This section explores formulas
for dn(x, y).

1.1 A nice formula in a special case is given by certain binomial coefficients:

(xy)n = x(
n
1)y(

n
1)[y, x](

n
2)[[y, x], x](

n
3)[[[y, x], x], x](

n
4) · · · [y, n−1x]

(nn)

The special case is G′ is abelian and commutes with y.
The commutators involved are built inductively: From y and x, one gets [y, x].

From [y, x] and x, one gets [[y, x], x]. From [y, n−2x] and x, one gets [y, n−1, x].
In general, one would also need to consider [y, x] and [[y, x], x], but the special case
assumes commutators commute, so [[y, x], [[y, x], x]] = 1. In general, one would also
need to consider [y, x] and y, but the special case assumes commutators commute with
y, so [[y, x], y] = 1.

To avoid an excess of brackets in the future, we use the left normed conven-
tion: [a, b, c, . . . , z] = [[. . . [[a, b], c], . . .], z]. For example, [[[y, x], x], x] = [y, x, x, x] and
[[y, x], [[y, x], x]] = [[y, x], [y, x, x]].

The exponents involved use binomial coefficients. The binomial coefficient
(
n
k

)
=

n!
(n−k)!k! is a polynomial in n of degree min(k, n−k) that takes on integer values when n

is an integer, but the polynomial itself has rational coefficients. There is a theorem that
every polynomial with rational coefficients that only takes integer values at integers is
a Z-linear combination of binomial coefficients.

The next section generalizes this formula to the case where commutators vanish if
they are nested deeply enough.

1.2 Hall polynomials for nilpotent groups are a nice way to express dn(x, y) in
terms of nested commutators.

To define how deeply nested a commutator is, we define the “weight” of various
simple expression. The short version is that a nested commutator has weight equal to
how many things get commutated. We say x and y are “commutators” of weight 1.
If w is a commutator of weight i and v is a commutator of weight j, then [w, v] is a
commutator of weight i+ j.

c⃝ 2013 Jack Schmidt
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A nilpotent group of class c is one in which all commutators of weight greater than
c vanish. Thus in a nilpotent group, we are interested in expressions for dn(x, y) sorted
by weight. Hall’s commutator collection process is particularly suited to this. In the
free nilpotent group of class c certain commutators of each weight are selected as “basic
commutators”. These basic commutators are always chosen to be commutators of basic
commutators of lower weight, and form a basis of the free abelian group generated by
all commutators of their weight modulo all commutators of higher weight. In terms of
these basic commutators, dn(x, y) is a product of powers of basic commutators, and
the exponents on each one are integer-valued rational-coefficient polynomials of n, the
so-called Hall polynomials.

The expansion up to weight 6 is in figure 2. The expansion up to weight 3 is:

(xy)n = xnyn[y, x](
n
2)[y, x, x](

n
3)[y, x, y]2(

n
3)+(

n
2) mod γ4(⟨x, y⟩)

where γ4(⟨x, y⟩) is the subgroup generated by all commutators of weight 4 or greater.
For n = 2, most of the binomial coefficients are 0, and so this gives the pleasant

finite formula:

(xy)2 = x2y2[y, x][[y, x], y]

However, for n = 3 and up the formula is no longer finite. In fact, allowing a less
nice formula, but using the same commutator collection process, we get for n = 3:

(xy)3 = x3y3[y, x][y, x, y][y, x, y][y, x, y, y][y, x][y, x, y][y, x, y]
·[y, x, y, y][y, x, x][y, x, x, y][y, x, x, y][y, x, x, y, y][y, x][y, x, y]

Yuck, d3(x, y) is expressed as a product of 14 commutators, in unattractive order.

1.3 Shorter expressions would be highly desirable. How many commutators does
d3(x, y) take? Is 14 commutators really efficient? In fact a simple argument using
diagrams shows us how to write dn(x, y) as a product of n− 1 commutators, each one
of a very nice form.

The diagram itself lies on what is called the Cayley graph of the integer lattice in
the plane. An explanation that produces identical diagrams is that we start at the
origin, and every time we read an xk we travel k in the x-direction and every time we
read a yk we travel k in the y-direction. Hence xyxy takes us along a zig-zag path
to the point with coordinates (2, 2). To make the picture more modern, we imagine
sky-scrapers built at all (m + 1

2 , n + 1
2 ) for m,n ∈ Z and that we are attached to the

origin by a (very) extendible leash that trails behind us (attached to a monkey vest).
Equality of paths means that if you follow the left hand side of the equality, and then
retrace your steps on the right hand side, then the leash doesn’t get stuck around a
building (though other pedestrians and small plants beware). In less modern language,
we only take the 1-skeleton; there are no 2-cells.

We want an expression for d2(x, y) using only a single commutator. We look at the
diagram for d2(x, y) = y−2x−2(xy)2:

.

=

.

and this latter is y−1[y, x]y = [y, x]y, showing us that
(xy)2 = x2y2[y, x]y.
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A few key points about the diagrams: conjugation is how you change the starting
position of diagram: wv means “first go backwards along v to get to the new starting
position, now travel w as if this was the origin, now travel v back to the true origin.”
For words that form a circle, this lets you change where the circle “starts.”

.

*

.

=

.

In other words, d3(x, y) ∗ [y, x]xy = [y2, x2]y, so using that [x, y]−1 = [y, x], we get

(xy)3 = x3y3[y2, x2]y[x, y]xy

.

=

.

*

.

In general we get
dn(x, y) = ([yn, xn]dn−1(y, x))

y

so that the commutator length of dn(x, y) is at most 1 + dn−1(x, y). Unrolling the
recursion shows the length of dn is at most n− 1.

1.4 The shortest possible expression in terms of number of commutators used
can be found with only a bit more trickery. Instead of using dn−1(y, x) to turn dn(x, y)
into a box, which is a commutator of powers, we need to use dn−2 to get a faster
recursion. The result is a weird shape, but if you look closely (and can distinguish
red versus blue in the following diagram), you can see the result is also a commutator.
Long story short,

dn(x, y) =
(
[xyn−1, y−1xn−2]dn−2(y, x)

)y
so that the commutator length of dn(x, y) is at most 1 + dn−2(x, y). Unrolling the
recursion shows the length of dn is at most ⌊n/2⌋.

1.5 Is there any shorter expression? This is asking about the so-called commu-
tator length. I hope the diagrams indicate that a geometric approach is useful. The
answer to the commutator length question makes more substantial use of topology.
Algorithmically, I would like to point out it uses integer programming (and the stable
version of the problem, which asks about the limit of 1

n th of the commutator length of
the nth power, uses linear programming).

See (Culler, 1981), (Bavard, 1991), (Calegari, 2009).
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For those of us who have not yet learned the topological methods, there is software
to handle the calculations, scallop.

$ ./scallop -c -C AAAAAABBBBBBabababababab

cl_{a*b}(1AAAAAABBBBBBabababababab ) = 5/2 = 2.5

The -c option tells it to use methods for free products of cyclic groups, like a free
group. The -C option tells it to compute commutator length (harder) rather than stable
commutator length. The answer it gives is currently always 0.5 less than what I would
consider the correct answer (it is computing a topological invariant, rather than the
stable or not commutator length). At any rate, this means the minimum number of
commutators when expressing d6(a, b) is 3.

See Danny Calegari’s monograph scl for details.
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2 Figures

The figures have been moved to the following pages.

Jack Schmidt
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(xy)n = xnyn

·[y, x]n2

·[y, x, x]n3

·[y, x, y]2n3+n2

·[y, x, x, x]n4

·[y, x, x, y]3n4+2n3

·[y, x, y, y]3n4+2n3

·[y, x, x, x, x]n5

·[y, x, x, x, y]4n5+3n4

·[y, x, x, y, y]6n5+6n4+n3

·[y, x, y, y, y]4n5+3n4

·[[y, x, x], [y, x]]6n5+7n4+n3

·[[y, x, y], [y, x]]12n5+18n4+6n3

·[y, x, x, x, x, x]n6

·[y, x, x, x, x, y]5n6+4n5

·[y, x, x, x, y, y]10n6+12n5+3n4

·[y, x, x, y, y, y]10n6+12n5+3n4

·[y, x, y, y, y, y]5n6+4n5

·[[y, x, x, x], [y, x]]10n6+13n5+3n4

·[[y, x, x, y], [y, x]]30n6+52n5+24n4+2n3

·[[y, x, y, y], [y, x]]30n6+54n5+27n4+3n3

·[[y, x, y], [y, x, x]]20n6+36n5+21n4+4n3

·[y, x, x, x, x, x, x]n7

·[y, x, x, x, x, x, y]6n7+5n6

·[y, x, x, x, x, y, y]15n7+20n6+6n5

·[y, x, x, x, y, y, y]20n7+30n6+12n5+n4

·[y, x, x, y, y, y, y]15n7+20n6+6n5

·[y, x, y, y, y, y, y]6n7+5n6

·[[y, x, x, x, x], [y, x]]15n7+21n6+6n5

·[[y, x, x, x, y], [y, x]]60n7+115n6+64n5+9n4

·[[y, x, x, y, y], [y, x]]90n7+190n6+126n5+27n4+n3

·[[y, x, y, y, y], [y, x]]60n7+120n6+72n5+12n4

·[[[y, x, x], [y, x]], [y, x]]45n7+100n6+67n5+12n4

·[[[y, x, y], [y, x]], [y, x]]90n7+225n6+184n5+51n4+2n3

·[[y, x, x, x], [y, x, x]]20n7+34n6+16n5+n4

·[[y, x, x, y], [y, x, x]]60n7+125n6+84n5+18n4

·[[y, x, y, y], [y, x, x]]60n7+130n6+96n5+27n4+2n3

·[[y, x, x, x], [y, x, y]]40n7+75n6+40n5+5n4

·[[y, x, x, y], [y, x, y]]120n7+270n6+196n5+48n4+2n3

·[[y, x, y, y], [y, x, y]]120n7+280n6+220n5+63n4+4n3

· · ·

Here [y, x] = y−1x−1yx is the group theoretic commutator, [y, x, x] = [[y, x], x] is the left
normed commutator, nk is the binomial coefficient n!

(n−k)!k!
and the “· · · ” refers to a product of

nested commutators of strictly larger weight, that is, an element of γ8(⟨x, y⟩) where γ1(G) = G
and γn+1(G) = [γn(G), G].

Figure 1: Expansion of (xy)n in terms of Hall’s basic commutators
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..

dn(x, y) =
y−nx−n(xy)n

.

=

.

[yn−1, xn−1]y =
(y1−nx1−nyn−1xn−1)y

.

∗

.

dn−1(y, x)
y =(

x1−ny1−n(yx)n−1
)y

This gives the simple recurrence:(
dn(x, y) = [yn−1, xn−1] · dn−1(y, x)

)y
Figure 2: Simple recursive expression in terms of commutators

(xy)2 = x2y2[y, x]y

(xy)3 = x3y3[y2, x2]y[x, y]xy

(xy)4 = x4y4[y3, x3]y[x2, y2]xy[y, x]yxy

(xy)5 = x5y5[y4, x4]y[x3, y3]xy[y2, x2]yxy[x, y]xyxy

(xy)6 = x6y6[y5, x5]y[x4, y4]xy[y3, x3]yxy[x2, y2]xyxy[y, x]yxyxy

(xy)7 = x7y7[y6, x6]y[x5, y5]xy[y4, x4]yxy[x3, y3]xyxy[y2, x2]yxyxy[x, y]xyxyxy

. . .

(xy)n = xnyn
∏n−1

i=1 t(n− i, i)

Here t(k, i) =

(
[xk, yk]

(−1)i
)···xy

and · · ·xy is the alternating product of x and y of length i,

ending in y.

Figure 3: Expansion of (xy)n as nice conjugates of [xk, yk]±1
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..

dn(x, y) =
y−nx−n(xy)n

.

=

.

[xyn−1, y−1xn−2]y =
(y1−nx1−nyxyn−2xn−2)y

.

∗

.

dn−2(y, x)
y =(

x2−ny2−n(yx)n−2
)y

This gives the faster recurrence:(
dn(x, y) = [xyn−1, y−1xn−2] · dn−2(y, x)

)y
Figure 4: Faster recursive expression in terms of commutators

d1 = 1
d2 = [xy1, y−1x0]y

d3 = [xy2, y−1x1]y

d4 = [xy3, y−1x2]y[yx1, x−1y0]xy

d5 = [xy4, y−1x3]y[yx2, x−1y1]xy

d6 = [xy5, y−1x4]y[yx3, x−1y2]xy[xy1, y−1x0]yxy

d7 = [xy6, y−1x5]y[yx4, x−1y3]xy[xy2, y−1x1]yxy

d8 = [xy7, y−1x6]y[yx5, x−1y4]xy[xy3, y−1x2]yxy[yx1, x−1y0]xyxy

d9 = [xy8, y−1x7]y[yx6, x−1y5]xy[xy4, y−1x3]yxy[yx2, x−1y1]xyxy

d10 = [xy9, y−1x8]y[yx7, x−1y6]xy[xy5, y−1x4]yxy[yx3, x−1y2]xyxy[xy1, y−1x0]yxyxy

d11 = [xy10, y−1x9]y[yx8, x−1y7]xy[xy6, y−1x5]yxy[yx4, x−1y3]xyxy[xy2, y−1x1]yxyxy

We leave it to the reader to formulate dn. These are expressions of the dn as a product
of the fewest commutators, ⌊n

2 ⌋.

Figure 5: Shortest expressions
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