
Sylow subgroups of GL(3,q)

Jack Schmidt

We describe the Sylow p-subgroups of GL(n, q) for n ≤ 4. These were described in
(Carter & Fong, 1964) and (Weir, 1955).

1 Overview

The groups GL(n, q) have three types of Sylow p-subgroups: p divides q, p > n, and
p ≤ n.

1.1 p divides q: The Sylow p-subgroups of the first type are easy to describe as the
upper triangular matrices with 1s on the diagonal (and anything above):

P =




1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗
0 0 0 0 1

 : ∗ ∈ Fq


In the remainder, we assume p does not divide q.

1.2 p > n: The Sylow p-subgroups of the second type are abelian and are contained
within a direct product T of extension fields of Fq. If e is the order of q mod p, then
p divides qe − 1 and so the Sylow p-subgroup of F×

qe is a non-identity cyclic group. If
e > n, then p does not divide the order of GL(n, q), so both T and the Sylow p-subgroup
will be the identity subgroup. If e = 1, then T is the group of diagonal matrices.

T =




ζ1 0 0 0 0
0 ζ2 0 0 0
0 0 ζ3 0 0
0 0 0 ζ4 0
0 0 0 0 ζ5

 : ζi ∈ F×
q


Since T is a direct product, its Sylow p-subgroup is the direct product of the Sylow
p-subgroups (F×

q )p of its factors F×
q .

P =




ζ1 0 0 0 0
0 ζ2 0 0 0
0 0 ζ3 0 0
0 0 0 ζ4 0
0 0 0 0 ζ5

 : ζi ∈ (F×
q )p


Now if e > 1 we work with block diagonal matrices. GL(e, q) is the set of linear
transformations of Fe

q. If we choose an isomorphism of Fq-vector spaces V ∼= Fe
q (that
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is, if we choose an ordered basis of V ), then we get an isomorphism GL(V ) ∼= GL(e, q).
The vector space V we are interested in is V = Fqe . Every extension field of Fq is a
Fq-vector space. Every element of F×

qe acts via multiplication on V in a Fq-linear way

(proof is the distributive and commutative law). Hence F×
qe ≤ GL(V ) ∼= GL(e, q). Now

we consider a larger vector space W ∼= Fn
q . W is a direct sum of copies of Fqe and then

copies of Fq. The subgroup T of GL(W ) is defined by letting copies of F×
qe act on the

copies of Fqe , and letting the identity act on the copies of Fq.

For example, if e = 3 and n = 13 then

Te =




ζ1 0 0 0 0
0 ζ2 0 0 0
0 0 ζ3 0 0
0 0 0 ζ4 0
0 0 0 0 1

 : ζi ∈ F×
q3


where each ζi is actually a 3×3 matrix block coming from GL(V ) = GL(Fqe) ∼= GL(3, q).
This happens for example when finding the Sylow 19-subgroup of GL(3, 7).

Then P again just restricts the ζi to come from the Sylow p-subgroup of F×
qe .

In all cases, we get an abelian (homocyclic) subgroup isomorphic to a Sylow p-subgroup
of a direct product of extension fields containing at least a primitive pth root of unity.
Indeed, the field Fqe is the splitting field of xp − 1 over Fq.

1.3 p ≤ n: The primes less than or equal to n are similar to the other primes that
don’t divide q, but there is an extra complication from the permutation matrices. Again
we look at the order e of q mod p. Since p ≤ n, e < n. If e = 1, then the subgroup
containing the Sylow is easy to describe: it is the groupM of monomial matrices. These
matrices have one nonzero entry in each row and column, so they are the product of a
permutation matrix and a diagonal matrix.

M = Sym(n)⋉ T,


0 ζ1 0 0 0
ζ2 0 0 0 0
0 0 0 0 ζ3
0 0 0 ζ4 0
0 0 ζ5 0 0

 ∈ M

Now if e > 1, then the ζi ∈ F×
qe are e× e matrix blocks, so we get

Me = Sym(⌊n/e⌋)⋉ Te.

As long as p > 2, this is fine.

If p = 2, then e needs to be defined to be the order of q mod 4, rather than mod 2. Hence
it is possible that e is divisible by p, so Me is not quite big enough. We need to take
a larger subgroup of GL(V ) than just F×

qe . We take one more Fq-linear transformation
of V = Fqe , the Frobenius automorphism, f : Fqe → Fqe : v 7→ vq. Since f is an
invertible Fq-linear transformation of V , f ∈ GL(V ). I like to call ⟨f⟩ by its fancy
name, Gal(Fqe/Fq). Since ⟨f⟩ normalizes F×

qe and intersects it trivial, the subgroup

generated by f and F×
qe is a semidirect product, ΓL(1, qe) = Gal(Fqe/Fq)⋉F×

qe , and we
define
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ΓMe = Sym(⌊n/e⌋)⋉ (Gal(Fqe/Fq)⋉ F×
qe)

⌊n/e⌋

Then a Sylow p-subgroup of ΓMe is formed by taking Sylow p-subgroups of each of its
ingredients. If P1 is a Sylow p-subgroup of Sym(⌊n/e⌋), and P2 is a Sylow p-subgroup
of Gal(Fqe/Fq), and P3 is a Sylow p-subgroup of F×

qe , then

P = P1 ⋉ (P2 ⋉ P3)
⌊n/e⌋

When n is small, it is very difficult for all of this to happen at once, so often things
will be simpler than in the general case.

1.4 Proofs For detailed proofs of similar descriptions, see (Carter & Fong, 1964)
and (Weir, 1955). However, if n, q, and p are explicit numbers, then one can usually
prove these results in a fairly elementary manner. More or less by definition, each of
the claimed Sylow p-subgroups is at least a p-subgroup. Each one is defined as the
Sylow p-subgroup of some subgroup of GL(n, q). These subgroups are chosen very
carefully: (1) they have a structure where Sylow p-subgroups can be specified fairly
explicitly in terms of Sylow p-subgroups of cyclic groups and a Sym(n), and (2) their
index is relatively prime to p, so that a Sylow p-subgroup of Me is a Sylow p-subgroup
of GL(n, q).

The general description (for p not dividing q) is as block monomial matrices with entries
from ΓL(1, qe). We compute the order of these groups:

|F×
qe | = qe − 1

|Te| = (qe − 1)⌊n/e⌋

|GL(n, q)| = q(
n
2)(qn − 1)(qn−1 − 1) · · · (q2 − 1)(q − 1)

If p > n, then the verification is some neat and elementary number theory. We can
assume e ≤ n, since otherwise p does not divide any of the factors in the above ex-
pression for |GL(n, q)|. Which factors does p divide? Clearly it divides qek − 1 since
qek = (qe)k ≡ 1k = 1 mod p. Does p divide (qek − 1)/(qe − 1) = (qe)k−1 + (qe)k−2 +
. . . + qe + 1 ≡ 1k−1 + 1k−2 + . . . + 11 + 10 = k mod p? Well, only if p ≤ k ≤ n, so
not in this case; we are safe. In particular, p does not divide [GL(n, q) : Te], since each
qi − 1 that p divides is of the form qek − 1, and for each of those there is a qe − 1 in
|Te|, and the quotient is not divisible by p.

The problem occurs when p ≤ n. Then it is possible that p divides (qek − 1)/(qe − 1),
so Te does not contain a Sylow p-subgroup. There are two main issues: p divides k or
p = 2 divides e.

For example, if e = 1 and n = p > 2, then |Te| = (q − 1)n and we only have (qp −
1)/(q − 1) ≡ p mod p2 to worry about. Hence a Sylow p-subgroup of Sym(p) with
order p takes care of the excess.

When p = 2, we no longer have (qp − 1)/(q− 1) ≡ p mod p2, and this necessitates the
Galois group.
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2 GL(1,q)

For n = 1, we have the situation with GL(1, q) ∼= F×
q is cyclic, and so in principle its

Sylow p-subgroups are all easy to describe. For later parallels, I’ll mention that Fq is
a 1-dimensional Fq-vector space, and F×

q acts on it by multiplication. In this case, the

matrix of an element ζ is easy to describe: it is
[
ζ
]
.

P =
{[
ζ1
]
: ζ1 ∈ (F×

q )p
}

In many ways though, n = 1 is so small the general features are obscured. In terms
of the overview, all primes fall into the case p > n with e = 1, so they are all Sylow
p-subgroups of T = GL(1, q), which is not a very impressive answer for “what are the
Sylow p-subgroups of GL(1, q)?”

3 GL(2,q)

For n = 2, we have that

|GL(2, q)| = (q2 − 1)(q2 − q) = q(q − 1)2(q + 1)

and the latter factorization is the driving force in our case-by-case analysis.

3.1 Case 0 (p divides q): If p divides q, then the upper triangular matrices with
ones on the diagonal form an elementary abelian Sylow q-subgroup of order q.

P =

{[
1 x
0 1

]
: x ∈ Fq

}

3.2 Case 1a (p > n, e = 1): If p > n divides q − 1, then we view F×
q × F×

q
∼=

GL(1, q)×GL(1, q) ≤ GL(2, q). The index [GL(2, q) : GL(1, q)×GL(1, q)] = q(q+1) is
not divisible by p, so a Sylow p-subgroup of GL(1, q)×GL(1, q) is a Sylow p-subgroup
of GL(2, q). A direct product of Sylow p-subgroups is a Sylow p-subgroup of the direct
product, so this case is easy.

P =

{[
ζ1 0
0 ζ2

]
: ζi ∈ (F×

q )p

}

3.3 Case 2a (p > n, e = 2): If p > n divides q + 1, then we consider F×
q2 ≤ GL(2, q)

with index [GL(2, q) : F×
q2 ] = q(q − 1) not divisible by p. Hence a Sylow p-subgroup of

F×
q2 is a cyclic Sylow p-subgroup of GL(2, q).

P =
{[

ζ1
]
: ζ1 ∈ (F×

q2)p

}
3.4 Case 1b (p = n, e = 1): If p = n divides (q − 1)/2, then we consider Sym(2)⋉
(GL(1, q)×GL(1, q)) consisting of monomial matrices, a subgroup of index [GL(2, q) :
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Sym(2) ⋉ (GL(1, q) × GL(1, q))] = q(q + 1)/2 which is not divisible by p. A Sylow
p-subgroup is thus a wreath product of a Sylow p-subgroup of Sym(n) with a Sylow
p-subgroup of GL(1, q). In this case, this just means monomial matrices whose entries
are 2kth roots of unity.

P =

{[
ζ1 0
0 ζ2

]
: ζi ∈ (F×

q )p

}
∪
{[

0 ζ1
ζ2 0

]
: ζi ∈ (F×

q )p

}
Or as a semidirect product:

P = Sym(2)⋉ (F×
q )2 =

{[
1 0
0 1

]
,

[
0 1
1 0

]}
⋉

{[
ζ1 0
0 ζ2

]
: ζi ∈ (F×

q )p

}

3.5 Case 2b (p = n, e = 2): If p = n divides (q+1)/2, then we consider Gal(Fq2/Fq)⋉
Fq2 , a subgroup of index [GL(2, q) : Gal(Fq2/Fq) ⋉ Fq2 ] = q(q − 1)/2 which is not di-
visible by p. A Sylow p-subgroup is thus a Sylow p-subgroup of Gal(Fq2/Fq) acting on
a Sylow p-subgroup of F×

q2 .

In more detail, Fq2 is a two-dimensional vector space, so choose a basis. The Frobenius
automorphism f : Fq2 → Fq2 : x 7→ x is an invertible Fq-linear transformation of this
two-dimensional vector space, so it has an associated 2 × 2 matrix,

[
f
]
. Similarly,

every element ζ1 of F×
q2 acts via multiplication as Fq-linear transformation of the two-

dimensional vector space Fq2 , and so has an associated 2 × 2 matrix
[
ζ1
]
. In these

terms we have the following explicit description of the Sylow p-subgroup:

P =
{[

ζ1
]
: ζ1 ∈ (F×

q2)p

}
∪
{[

f
] [

ζ1
]
: ζ1 ∈ (F×

q2)p

}
or as a semidirect product:

P = Gal(Fq2/Fq)⋉ (F×
q2)p =

{[
1 0
0 1

]
,
[
f
]}

⋉
{[

ζ1
]
: ζ1 ∈ (F×

q2)p

}

4 GL(3,q)

For n = 3, we have that

|GL(3, q)| = (q3 − 1)(q3 − q)(q3 − q2) = q3(q − 1)3(q + 1)(q2 + q + 1)

and the latter factorization is the driving force in our case-by-case analysis.

4.1 Case 0 (p divides q): If p divides q, then the upper triangular matrices with
ones on the diagonal form a Sylow q-subgroup of order q3, with derived subgroup,
center, and Frattini subgroup all of order q.

4.2 Case 1a (p > n and e = 1): If p > n divides q − 1, then we view F×
q × F×

q ×
F×
q

∼= GL(1, q) × GL(1, q) × GL(1, q) ≤ GL(3, q). The index [GL(3, q) : GL(1, q)3] =
q3(q+1)(q2+ q+1) is not divisible by p, so a Sylow p-subgroup of GL(1, q)3 is a Sylow
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p-subgroup of GL(3, q). A direct product of Sylow p-subgroups is a Sylow p-subgroup
of the direct product, so this case is easy.

4.3 Case 2a (p > n and e = 2): If p > n divides q + 1, then we consider 1× F×
q2 ≤

GL(3, q) with index [GL(3, q) : F×
q2 ] = q3(q − 1)2(q2 + q + 1) not divisible by p. Hence

a Sylow p-subgroup of F×
q2 is a cyclic Sylow p-subgroup of GL(3, q).

4.4 Case 3a (p > n and e = 3): If p > n divides q2 + q + 1, then we consider
F×
q3 ≤ GL(3, q) with index q3(q − 1)2(q + 1), not divisible by p. Hence a Sylow p-

subgroup of F×
q3 is a cyclic Sylow p-subgroup of GL(3, q).

Now we handle p = 2 (case b) and p = 3 (case c).

4.5 Case b (p = 2): For p = 2, we know that q is odd lest we are in case 0. Hence in
all case b, we have a Sylow p-subgroup of GL(1, q)×GL(2, q) is a Sylow 2p-subgroup of
GL(3, q) since the index [GL(3, q) : GL(1, q)×GL(2, q)] = q2(q2+ q+1) is not divisible
by p. Note that there is no case 3b, since q2 + q + 1 ≡ 1 mod 2 is never divisible by
2. Hence we just have a direct product of Sylow 2-subgroups of GL(1, q) and GL(2, q)
which follow from the previous section.

4.6 Case c (p = 3): For p = 3, we are either in case 1c or case 2c. Case 3c is handled
by case 1c. Actually case 2c is handled by case 2a; only p = 2 was an exception. In
case 1c, we consider the subgroup Sym(3)⋉GL(1, q)3 of monomial matrices which has
index q3(q+1)(q2+ q+1)/6 which is not divisible by p, since q2+ q+1 is not divisible
by 9. Again we get monomial matrices whose permutation pattern comes from a Sylow
3-subgroup of Sym(3), and whose entries come from a Sylow 3-subgroup of F×

q .

5 GL(4,q)

For n = 4, we have that

|GL(4, q)| = (q4 − 1)(q4 − q)(q4 − q2)(q4 − q3) = q6(q − 1)4(q + 1)2(q2 + q + 1)(q2 + 1)

and the latter factorization is the driving force in our case-by-case analysis.

Case 0, 1a, 2a, 3a are suspiciously similar. Even case 4a should be no surprise.

Case 0: upper unitriangular matrices

Case 1a: Look inside GL(1, q)4.

Case 2a: Look inside F×
q2 × F×

q2

Case 3a: Look inside F×
q3

Case 4a: Look inside F×
q4

For p = 2 we have case b. For p = 3 we have case c.

For p = 2, we always live inside Sym(2)⋉GL(2, q)2, and so case 1b and 2b from n = 2
suffice. There is no need for 3b or 4b.
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For p = 3, in 1c, we look inside GL(1, q)×GL(3, q) and use case 1c from n = 3, and in
2c we look inside F×

q2 × F×
q2 and use 2c from n = 2. There is no need for 3c or 4c.

Higher dimensions n behave fairly similarly. Case 0 is always p divides q and is always
the upper unitriangular matrices. Case a is always p > n, and always results in an
abelian Sylow p-subgroup contained within some maximal torus (not necessarily split,
that is what the case 1a, 2a, 3a, 4a, etc. check. Case b,c,d handle the primes p ≤ n
and involve a mix of Galois groups and permutation matrices (with the Galois groups
popping up in case 2,3,4, etc. when the torus is not split, and the permutation matrices
popping up whenever one deals with a subgroup of the form GL(1, q)p ≤ Sym(p) ⋉
GL(1, q)p).
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